Committed emissions from existing energy infrastructure jeopardize 1.5°C climate target

被引:561
作者
Tong, Dan [1 ,2 ]
Zhang, Qiang [2 ]
Zheng, Yixuan [2 ,3 ]
Caldeira, Ken [3 ]
Shearer, Christine [4 ]
Hong, Chaopeng [1 ]
Qin, Yue [1 ]
Davis, Steven J. [1 ,2 ,5 ]
机构
[1] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
[2] Tsinghua Univ, Dept Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing, Peoples R China
[3] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA
[4] Global Energy Monitor, San Francisco, CA USA
[5] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
CARBON LOCK-IN; CO2; EMISSIONS; CAPITAL STOCK; NATURAL-GAS; DEGREES-C; POLICY; CHINA; COAL;
D O I
10.1038/s41586-019-1364-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Net anthropogenic emissions of carbon dioxide (CO2) must approach zero by mid-century (2050) in order to stabilize the global mean temperature at the level targeted by international efforts(1-5). Yet continued expansion of fossil-fuel-burning energy infrastructure implies already 'committed' future CO2 emissions(6-13). Here we use detailed datasets of existing fossil-fuel energy infrastructure in 2018 to estimate regional and sectoral patterns of committed CO2 emissions, the sensitivity of such emissions to assumed operating lifetimes and schedules, and the economic value of the associated infrastructure. We estimate that, if operated as historically, existing infrastructure will cumulatively emit about 658 gigatonnes of CO2 (with a range of 226 to 1,479 gigatonnes CO2, depending on the lifetimes and utilization rates assumed). More than half of these emissions are predicted to come from the electricity sector; infrastructure in China, the USA and the 28 member states of the European Union represents approximately 41 per cent, 9 per cent and 7 per cent of the total, respectively. If built, proposed power plants (planned, permitted or under construction) would emit roughly an extra 188 (range 37-427) gigatonnes CO2. Committed emissions from existing and proposed energy infrastructure (about 846 gigatonnes CO2) thus represent more than the entire carbon budget that remains if mean warming is to be limited to 1.5 degrees Celsius (degrees C) with a probability of 66 to 50 per cent (420-580 gigatonnes CO2)(5), and perhaps two-thirds of the remaining carbon budget if mean warming is to be limited to less than 2 degrees C (1,170-1,500 gigatonnes CO2)(5). The remaining carbon budget estimates are varied and nuanced(14,15), and depend on the climate target and the availability of large-scale negative emissions(16). Nevertheless, our estimates suggest that little or no new CO2-emitting infrastructure can be commissioned, and that existing infrastructure may need to be retired early (or be retrofitted with carbon capture and storage technology) in order to meet the Paris Agreement climate goals(17). Given the asset value per tonne of committed emissions, we suggest that the most cost-effective premature infrastructure retirements will be in the electricity and industry sectors, if non-emitting alternatives are available and affordable(4,18).
引用
收藏
页码:373 / +
页数:17
相关论文
共 66 条
[1]   Assessment of methane emissions from the US oil and gas supply chain [J].
Alvarez, Ramon A. ;
Zavala-Araiza, Daniel ;
Lyon, David R. ;
Allen, David T. ;
Barkley, Zachary R. ;
Brandt, Adam R. ;
Davis, Kenneth J. ;
Herndon, Scott C. ;
Jacob, Daniel J. ;
Karion, Anna ;
Kort, Eric A. ;
Lamb, Brian K. ;
Lauvaux, Thomas ;
Maasakkers, Joannes D. ;
Marchese, Anthony J. ;
Omara, Mark ;
Pacala, Stephen W. ;
Peischl, Jeff ;
Robinson, Allen L. ;
Shepson, Paul B. ;
Sweeney, Colm ;
Townsend-Small, Amy ;
Wofsy, Steven C. ;
Hamburg, Steven P. .
SCIENCE, 2018, 361 (6398) :186-188
[2]  
[Anonymous], 2018, STAT FACTS VEH TRAFF
[3]  
[Anonymous], 2016, CAP COST EST UT SCAL
[4]  
Arneth A, 2017, NAT GEOSCI, V10, P79, DOI [10.1038/ngeo2882, 10.1038/NGEO2882]
[5]   Carbon lock-in through capital stock inertia associated with weak near-term climate policies [J].
Bertram, Christoph ;
Johnson, Nils ;
Luderer, Gunnar ;
Riahi, Keyvvan ;
Isaac, Morna ;
Eom, Jiyong .
TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2015, 90 :62-72
[6]   Life-Cycle Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum [J].
Burnham, Andrew ;
Han, Jeongwoo ;
Clark, Corrie E. ;
Wang, Michael ;
Dunn, Jennifer B. ;
Palou-Rivera, Ignasi .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (02) :619-627
[7]  
Carlson KM, 2017, NAT CLIM CHANGE, V7, P63, DOI [10.1038/NCLIMATE3158, 10.1038/nclimate3158]
[8]   Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks (vol 11, pg 568, 2018) [J].
Comyn-Platt, Edward ;
Hayman, Garry ;
Huntingford, Chris ;
Chadburn, Sarah E. ;
Burke, Eleanor J. ;
Harper, Anna B. ;
Collins, William J. ;
Webber, Christopher P. ;
Powell, Tom ;
Cox, Peter M. ;
Gedney, Nicola ;
Sitch, Stephen .
NATURE GEOSCIENCE, 2018, 11 (11) :882-886
[9]  
Davis S.C., 2006, TRANSPORTATION ENERG, V25
[10]   Net-zero emissions energy systems [J].
Davis, Steven J. ;
Lewis, Nathan S. ;
Shaner, Matthew ;
Aggarwal, Sonia ;
Arent, Doug ;
Azevedo, Ines L. ;
Benson, Sally M. ;
Bradley, Thomas ;
Brouwer, Jack ;
Chiang, Yet-Ming ;
Clack, Christopher T. M. ;
Cohen, Armond ;
Doig, Stephen ;
Edmonds, Jae ;
Fennell, Paul ;
Field, Christopher B. ;
Hannegan, Bryan ;
Hodge, Bri-Mathias ;
Hoffert, Martin I. ;
Ingersoll, Eric ;
Jaramillo, Paulina ;
Lackner, Klaus S. ;
Mach, Katharine J. ;
Mastrandrea, Michael ;
Ogden, Joan ;
Peterson, Per F. ;
Sanchez, Daniel L. ;
Sperling, Daniel ;
Stagner, Joseph ;
Trancik, Jessika E. ;
Yang, Chi-Jen ;
Caldeira, Ken .
SCIENCE, 2018, 360 (6396) :1419-+