Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study

被引:732
作者
Hu, Jiuning [1 ,3 ]
Ruan, Xiulin [1 ,4 ]
Chen, Yong P. [1 ,2 ,3 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
关键词
TEMPERATURE; STATE; PHASE; FILMS;
D O I
10.1021/nl901231s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of several nanometers in size (up to similar to 4 nm wide and similar to 10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g., similar to 2000 W/m-K at 400 K for a 1.5 nm x 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30 degrees gives the maximal thermal rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.
引用
收藏
页码:2730 / 2735
页数:6
相关论文
共 30 条
[11]  
JIANG J, 2009, PREPRINT
[12]   Thermal transport measurements of individual multiwalled nanotubes [J].
Kim, P ;
Shi, L ;
Majumdar, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :215502-1
[13]   Negative differential thermal resistance and thermal transistor [J].
Li, BW ;
Wang, L ;
Casati, G .
APPLIED PHYSICS LETTERS, 2006, 88 (14)
[14]   Thermal diode: Rectification of heat flux [J].
Li, BW ;
Wang, L ;
Casati, G .
PHYSICAL REVIEW LETTERS, 2004, 93 (18) :184301-1
[15]   Edge state in graphene ribbons: Nanometer size effect and edge shape dependence [J].
Nakada, K ;
Fujita, M ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 1996, 54 (24) :17954-17961
[16]   Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering [J].
Nika, D. L. ;
Pokatilov, E. P. ;
Askerov, A. S. ;
Balandin, A. A. .
PHYSICAL REVIEW B, 2009, 79 (15)
[17]  
NIKA DL, 2009, PREPRINT
[18]   A UNIFIED FORMULATION OF THE CONSTANT TEMPERATURE MOLECULAR-DYNAMICS METHODS [J].
NOSE, S .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (01) :511-519
[19]   Two-dimensional gas of massless Dirac fermions in graphene [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Katsnelson, MI ;
Grigorieva, IV ;
Dubonos, SV ;
Firsov, AA .
NATURE, 2005, 438 (7065) :197-200
[20]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669