Nanoscale optical field localization by resonantly focused plasmons

被引:25
作者
Feng, Liang [1 ]
Van Orden, Derek [2 ]
Abashin, Maxim [1 ]
Wang, Qian-Jin [3 ]
Chen, Yan-Feng [3 ]
Lomakin, Vitaliy [1 ]
Fainman, Yeshaiahu [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
来源
OPTICS EXPRESS | 2009年 / 17卷 / 06期
关键词
SURFACE-PLASMONS;
D O I
10.1364/OE.17.004824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We experimentally demonstrate use of plasmonic resonant phenomena combined with strong field localization to enhance efficiency of confining optical fields in a Si waveguide. Our approach utilizes a plasmonic resonant nano-focusing-antenna (RNFA), that simultaneously supports several focusing mechanisms in a single nanostructure, integrated with a lossless Si waveguide utilized with silicon-on-insulator (SOI) technology, to achieve a sub-diffraction limited focusing with a nanoscale (deeply subwavelength) spot size. The metallic RNFA effectively converts an incoming propagating waveguide mode to a localized resonant plasmon mode in an ultrasmall volume in all 3 dimensions. The near-field optical measurements of the fabricated RNFA using heterodyne near-field scanning optical microscope (H-NSOM) validate the theoretical predictions showing strong optical field localization. (C) 2009 Optical Society of America
引用
收藏
页码:4824 / 4832
页数:9
相关论文
共 27 条
[1]   Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]   Light delivery techniques for heat-assisted magnetic recording [J].
Challener, WA ;
McDaniel, TW ;
Mihalcea, CD ;
Mountfield, KR ;
Pelhos, K ;
Sendur, IK .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (2B) :981-988
[4]   Photoemission electron microscopy as a tool for the investigation of optical near fields -: art. no. 047601 [J].
Cinchetti, M ;
Gloskovskii, A ;
Nepjiko, SA ;
Schönhense, G ;
Rochholz, H ;
Kreiter, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[5]   Sub-diffraction-limited optical imaging with a silver superlens [J].
Fang, N ;
Lee, H ;
Sun, C ;
Zhang, X .
SCIENCE, 2005, 308 (5721) :534-537
[6]   Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves [J].
Feng, Liang ;
Tetz, Kevin A. ;
Slutsky, Boris ;
Lomakin, Vitaliy ;
Fainman, Yeshaiahu .
APPLIED PHYSICS LETTERS, 2007, 91 (08)
[7]  
Gelman A., 2021, Bayesian Data Analysis
[8]   Local electric field enhancement during nanofocusing of plasmons by a tapered gap [J].
Gramotnev, Dmitri K. ;
Pile, David F. P. ;
Vogel, Michael W. ;
Zhang, Xiang .
PHYSICAL REVIEW B, 2007, 75 (03)
[9]   AMANDA observations constrain the ultrahigh energy neutrino flux (vol 97, art no 071101, 2006) [J].
Halzen, Francis ;
Hooper, Dan .
PHYSICAL REVIEW LETTERS, 2006, 97 (09)
[10]  
Hohenau A, 2005, OPT LETT, V30, P893, DOI 10.1364/OL.30.8.000893