Entanglement scaling in critical two-dimensional fermionic and bosonic systems

被引:149
作者
Barthel, T. [1 ]
Chung, M. -C. [1 ]
Schollwoeck, U. [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany
来源
PHYSICAL REVIEW A | 2006年 / 74卷 / 02期
关键词
D O I
10.1103/PhysRevA.74.022329
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We relate the reduced density matrices of quadratic fermionic and bosonic models to their Green's function matrices in a unified way and calculate the scaling of the entanglement entropy of finite systems in an infinite universe exactly. For critical fermionic two-dimensional (2D) systems at T=0, two regimes of scaling are identified: generically, we find a logarithmic correction to the area law with a prefactor dependence on the chemical potential that confirms earlier predictions based on the Widom conjecture. If, however, the Fermi surface of the critical system is zero-dimensional, then we find an area law with a sublogarithmic correction. For a critical bosonic 2D array of coupled oscillators at T=0, our results show that the entanglement entropy follows the area law without corrections.
引用
收藏
页数:5
相关论文
共 31 条
[1]   Entanglement properties of the harmonic chain [J].
Audenaert, K ;
Eisert, J ;
Plenio, MB ;
Werner, RR .
PHYSICAL REVIEW A, 2002, 66 (04) :14
[2]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[3]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[4]   ON GEOMETRIC ENTROPY [J].
CALLAN, C ;
WILCZEK, F .
PHYSICS LETTERS B, 1994, 333 (1-2) :55-61
[5]   Many-body density matrices for free fermions [J].
Cheong, SA ;
Henley, CL .
PHYSICAL REVIEW B, 2004, 69 (07)
[6]  
CHEONG SA, 2004, PHYS REV B, P3619
[7]   Density-matrix spectra of solvable fermionic systems [J].
Chung, MC ;
Peschel, I .
PHYSICAL REVIEW B, 2001, 64 (06)
[8]   DIAGONALIZATION OF QUADRATIC BOSON HAMILTONIAN [J].
COLPA, JHP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1978, 93 (3-4) :327-353
[9]   Entanglement entropy of fermions in any dimension and the widom conjecture [J].
Gioev, D ;
Klich, I .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[10]   Entanglement in the XY spin chain [J].
Its, AR ;
Jin, BQ ;
Korepin, VE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (13) :2975-2990