Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions

被引:72
作者
Gundlach, Carsten [1 ]
Martin-Garcia, Jose M.
机构
[1] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[2] CSIC, Inst Estructura Mat, Ctr Fis Miguel A Catalan, E-28006 Madrid, Spain
来源
PHYSICAL REVIEW D | 2006年 / 74卷 / 02期
关键词
D O I
10.1103/PhysRevD.74.024016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We prove that when the equations are restricted to the principal part the standard version of the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation of the Einstein equations is equivalent to the Nagy-Ortiz-Reula (NOR) formulation for any gauge, and that the Kidder-Scheel-Teukolsky (KST) formulation is equivalent to NOR for a variety of gauges. We review a family of elliptic gauge conditions and the implicit parabolic and hyperbolic drivers that can be derived from them, and show how to make them symmetry-seeking. We investigate the hyperbolicity of Arnowitt-Deser-Misner (ADM), NOR, and BSSN with implicit hyperbolic lapse and shift drivers. We show that BSSN with the coordinate drivers used in recent "moving puncture" binary black hole evolutions is ill-posed at large shifts, and suggest how to make it strongly hyperbolic for arbitrary shifts. For ADM, NOR, and BSSN with elliptic and parabolic gauge conditions, which cannot be hyperbolic, we investigate a necessary condition for well-posedness of the initial-value problem.
引用
收藏
页数:19
相关论文
共 30 条
[1]   Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[2]   Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity -: art. no. 124011 [J].
Alcubierre, M ;
Allen, G ;
Brügmann, B ;
Seidel, E ;
Suen, WM .
PHYSICAL REVIEW D, 2000, 62 (12) :1-15
[3]   Gravitational-wave extraction from an inspiraling configuration of merging black holes [J].
Baker, JG ;
Centrella, J ;
Choi, DI ;
Koppitz, M ;
van Meter, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[4]   Coordinate conditions in three-dimensional numerical relativity [J].
Balakrishna, J ;
Daues, G ;
Seidel, E ;
Suen, WM ;
Tobias, M ;
Wang, E .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (12) :L135-L142
[5]   Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations [J].
Beyer, H ;
Sarbach, O .
PHYSICAL REVIEW D, 2004, 70 (10) :104004-1
[6]  
BEYER HR, GRQC0510097
[7]   Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations [J].
Bona, C ;
Lehner, L ;
Palenzuela-Luque, C .
PHYSICAL REVIEW D, 2005, 72 (10)
[8]   Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates -: art. no. 104007 [J].
Bonazzola, S ;
Gourgoulhon, E ;
Grandclément, P ;
Novak, J .
PHYSICAL REVIEW D, 2004, 70 (10) :24
[9]   Accurate evolutions of orbiting black-hole binaries without excision [J].
Campanelli, M ;
Lousto, CO ;
Marronetti, P ;
Zlochower, Y .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[10]   Accurate evolution of orbiting binary black holes [J].
Diener, P ;
Herrmann, F ;
Pollney, D ;
Schnetter, E ;
Seidel, E ;
Takahashi, R ;
Thornburg, J ;
Ventrella, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (12)