Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations

被引:14
作者
Bona, C [1 ]
Lehner, L
Palenzuela-Luque, C
机构
[1] Univ Illes Balears, Dept Fis, E-07071 Palma de Mallorca, Spain
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
来源
PHYSICAL REVIEW D | 2005年 / 72卷 / 10期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.72.104009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the implications of adopting hyperbolic-driver coordinate conditions motivated by geometrical considerations. In particular, conditions that minimize the rate of change of the metric variables. We analyze the properties of the resulting system of equations and their effect when implementing excision techniques. We find that commonly used coordinate conditions lead to a characteristic structure at the excision surface where some modes are not of outflow type with respect to any excision boundary chosen inside the horizon. Thus, boundary conditions are required for these modes. Unfortunately, the specification of these conditions is a delicate issue as the outflow modes involve both gauge and main variables. As an alternative to these driver equations, we examine conditions derived from extremizing a scalar constructed from Killing's equation and present specific numerical examples.
引用
收藏
页数:15
相关论文
共 41 条
[1]   Towards standard testbeds for numerical relativity [J].
Alcubierre, M ;
Allen, G ;
Bona, C ;
Fiske, D ;
Goodale, T ;
Guzmán, FS ;
Hawke, I ;
Hawley, SH ;
Husa, S ;
Koppitz, M ;
Lechner, C ;
Pollney, D ;
Rideout, D ;
Salgado, M ;
Schnetter, E ;
Seidel, E ;
Shinkai, H ;
Shoemaker, D ;
Szilágyi, B ;
Takahashi, R ;
Winicour, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (02) :589-613
[2]   Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[3]  
ANDERSON M, GRQC0307055, P64006
[4]   Stuffed black holes [J].
Arbona, A ;
Bona, C ;
Carot, J ;
Mas, L ;
Masso, J ;
Stela, J .
PHYSICAL REVIEW D, 1998, 57 (04) :2397-2402
[5]   Coordinate conditions in three-dimensional numerical relativity [J].
Balakrishna, J ;
Daues, G ;
Seidel, E ;
Suen, WM ;
Tobias, M ;
Wang, E .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (12) :L135-L142
[6]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[7]   Well-posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations [J].
Beyer, H ;
Sarbach, O .
PHYSICAL REVIEW D, 2004, 70 (10) :104004-1
[8]   Dynamical shift conditions for the Z4 and BSSN formalisms [J].
Bona, C ;
Palenzuela, C .
PHYSICAL REVIEW D, 2004, 69 (10)
[9]   Symmetry-breaking mechanism for the Z4 general-covariant evolution system -: art. no. 064036 [J].
Bona, C ;
Ledvinka, T ;
Palenzuela, C ;
Zácek, M .
PHYSICAL REVIEW D, 2004, 69 (06) :11
[10]   General-covariant evolution formalism for numerical relativity -: art. no. 104005 [J].
Bona, C ;
Ledvinka, T ;
Palenzuela, C ;
Zácek, M .
PHYSICAL REVIEW D, 2003, 67 (10)