SEBINI: Software Environment for BIological Network Inference

被引:17
作者
Taylor, Ronald C. [1 ]
Shah, Anuj
Treatman, Charles
Blevins, Meridith
机构
[1] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA
[2] Oberlin Coll, Oberlin, OH 44074 USA
[3] Case Western Reserve Univ, Cleveland, OH 44106 USA
关键词
D O I
10.1093/bioinformatics/btl444
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Software Environment for BIological Network Inference (SEBINI) has been created to provide an interactive environment for the deployment and evaluation of algorithms used to reconstruct the structure of biological regulatory and interaction networks. SEBINI can be used to compare and train network inference methods on artificial networks and simulated gene expression perturbation data. It also allows the analysis within the same framework of experimental high-throughput expression data using the suite of (trained) inference methods; hence SEBINI should be useful to software developers wishing to evaluate, compare, refine or combine inference techniques, and to bioinformaticians analyzing experimental data. SEBINI provides a platform that aids in more accurate reconstruction of biological networks, with less effort, in less time.
引用
收藏
页码:2706 / 2708
页数:3
相关论文
共 12 条
[1]   ASIAN: a website for network inference [J].
Aburatani, S ;
Goto, K ;
Saito, S ;
Fumoto, M ;
Imaizumi, A ;
Sugaya, N ;
Murakami, H ;
Sato, M ;
Toh, H ;
Horimoto, K .
BIOINFORMATICS, 2004, 20 (16) :2853-2856
[2]  
HARTEMINK A, 2005, BANJO
[3]  
Ideker T E, 2000, Pac Symp Biocomput, P305
[4]   Logic functions of the genomic cis-regulatory code [J].
Istrail, S ;
Davidson, EH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (14) :4954-4959
[5]   ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context [J].
Margolin, AA ;
Nemenman, I ;
Basso, K ;
Wiggins, C ;
Stolovitzky, G ;
Dalla Favera, R ;
Califano, A .
BMC BIOINFORMATICS, 2006, 7 (Suppl 1)
[6]   Artificial gene networks for objective comparison of analysis algorithms [J].
Mendes, Pedro ;
Sha, Wei ;
Ye, Keying .
BIOINFORMATICS, 2003, 19 :II122-II129
[7]   Causal protein-signaling networks derived from multiparameter single-cell data [J].
Sachs, K ;
Perez, O ;
Pe'er, D ;
Lauffenburger, DA ;
Nolan, GP .
SCIENCE, 2005, 308 (5721) :523-529
[8]   Cytoscape: A software environment for integrated models of biomolecular interaction networks [J].
Shannon, P ;
Markiel, A ;
Ozier, O ;
Baliga, NS ;
Wang, JT ;
Ramage, D ;
Amin, N ;
Schwikowski, B ;
Ideker, T .
GENOME RESEARCH, 2003, 13 (11) :2498-2504
[9]  
Spirtes P., 2000, CAUSATION PREDICTION
[10]   Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection [J].
Tamada, Yoshinori ;
Kim, SunYong ;
Bannai, Hideo ;
Imoto, Seiya ;
Tashiro, Kousuke ;
Kuhara, Satoru ;
Miyano, Satoru .
BIOINFORMATICS, 2003, 19 :II227-II236