Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients

被引:224
作者
Wolthaus, Jochem W. H. [1 ]
Schneider, Christoph [1 ]
Sonke, Jan-Jakob [1 ]
van Herk, Marcel [1 ]
Belderbos, Jose S. A. [1 ]
Rossi, Maddalena M. G. [1 ]
Lebesque, Joos V. [1 ]
Damen, Eugene M. F. [1 ]
机构
[1] Antoni Van Leeuwenhoek Hosp, Netherlands Canc Inst, Dept Radiat Oncol, NL-1066 CX Amsterdam, Netherlands
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2006年 / 65卷 / 05期
关键词
computed tomography; four-dimensional; respiration-correlated; breathing; treatment planning; lung cancer; mid-ventilation;
D O I
10.1016/j.ijrobp.2006.04.031
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Four-dimensional (4D) respiration-correlated imaging techniques can be used to obtain (respiration) artifact-free computed tomography (CT) images of the thorax. Current radiotherapy planning systems, however, do not accommodate 4D-CT data. The purpose of this study was to develop a simple, new concept to incorporate patient-specific motion information, using 4D-CT scans, in the radiotherapy planning process of lung cancer patients to enable smaller error margins. Methods and Materials: A single CT scan was selected from the 4D-CT data set. This scan represented the tumor in its time-averaged position over the respiratory cycle (the mid-ventilation CT scan). To select the appropriate CT scan, two methods were used. First, the three-dimensional tumor motion was analyzed semiautomatically to calculate the mean tumor position and the corresponding respiration phase. An alternative automated method was developed to select the correct CT scan using the diaphragm motion. Results: Owing to hysteresis, mid-ventilation selection using the three-dimensional tumor motion had a tumor position accuracy (with respect to the mean tumor position) better than 1.1 +/- 1.1 mm for all three directions (inhalation and exhalation). The accuracy in the diaphragm motion method was better than 1.1 +/- 1.1 mm. Conventional free-breathing CT scanning had an accuracy better than 0 +/- 3.9 mm. The mid-ventilation concept can result in an average irradiated volume reduction of 20% for tumors with a diameter of 40 mm. Conclusion: Tumor motion and the diaphragm motion method can be used to select the (artifact-free) mid-ventilation CT scan, enabling a significant reduction of the irradiated volume. (c) 2006 Elsevier Inc.
引用
收藏
页码:1560 / 1571
页数:12
相关论文
共 41 条
[1]   Evaluation of the influence of breathing on the movement and modeling of lung tumors [J].
Allen, AM ;
Siracuse, KM ;
Hayman, JA ;
Balter, JM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2004, 58 (04) :1251-1257
[2]   Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing [J].
Balter, JM ;
TenHaken, RK ;
Lawrence, TS ;
Lam, KL ;
Robertson, JM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1996, 36 (01) :167-174
[3]   Acute esophageal toxicity in non-small cell lung cancer patients after high dose conformal radiotherapy [J].
Belderbos, J ;
Heemsbergen, W ;
Hoogeman, M ;
Pengel, K ;
Rossi, M ;
Lebesque, J .
RADIOTHERAPY AND ONCOLOGY, 2005, 75 (02) :157-164
[4]   First results of a phase I/II dose escalation trial in non-small cell lung cancer using three-dimensional conformal radiotherapy [J].
Belderbos, JSA ;
De Jaeger, K ;
Heemsbergen, WD ;
Seppenwoolde, Y ;
Baas, P ;
Boersma, LJ ;
Lebesque, JV .
RADIOTHERAPY AND ONCOLOGY, 2003, 66 (02) :113-120
[5]   Artifacts in computed tomography scanning of moving objects [J].
Chen, GTY ;
Kung, JH ;
Beaudette, KP .
SEMINARS IN RADIATION ONCOLOGY, 2004, 14 (01) :19-26
[6]   The effect of set-up uncertainties, contour changes, and tissue inhomogeneities on target dose-volume histograms [J].
Cho, BCJ ;
van Herk, M ;
Mijnheer, BJ ;
Bartelink, H .
MEDICAL PHYSICS, 2002, 29 (10) :2305-2318
[7]   Are multiple CT scans required for planning curative radiotherapy in lung tumors of the lower lobe? [J].
De Koste, JRV ;
Lagerwaard, FJ ;
de Boer, HCJ ;
Nijssen-Visser, MR ;
Senan, S .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2003, 55 (05) :1394-1399
[8]   The effect of breathing and set-up errors on the cumulative dose to a lung tumor [J].
Engelsmann, M ;
Damen, EMF ;
De Jaeger, K ;
van Ingen, KM ;
Mijnheer, BJ .
RADIOTHERAPY AND ONCOLOGY, 2001, 60 (01) :95-105
[9]   Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer [J].
Erridge, SC ;
Seppenwoolde, Y ;
Muller, SH ;
van Herk, M ;
De Jaeger, K ;
Belderbos, JSA ;
Boersma, LJ ;
Lebesque, JV .
RADIOTHERAPY AND ONCOLOGY, 2003, 66 (01) :75-85
[10]   Displacement-based binning of time-dependent computed tomography image data sets [J].
Fitzpatrick, MJ ;
Starkschall, G ;
Antolak, JA ;
Fu, J ;
Shukla, H ;
Keall, PJ ;
Klahr, P ;
Mohan, R .
MEDICAL PHYSICS, 2006, 33 (01) :235-246