A numerical study of the semi-classical limit of the focusing nonlinear Schrodinger equation

被引:27
作者
Ceniceros, HD
Tian, FR
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
D O I
10.1016/S0375-9601(01)00011-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the solution of the focusing nonlinear Schrodinger equation in the semiclassical limit. Numerical solutions are presented for four different kinds of initial data, of which three are analytic and one is nonanalytic. We verify numerically the weak convergence of the oscillatory solution by examining the strong convergence of the spatial average of the solution. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 33 条
[1]  
BLOCH AM, 1994, NATO ADV SCI INST SE, V320, P1
[2]   Numerical simulation of the semi-classical limit of the focusing nonlinear Schrodinger equation [J].
Bronski, JC ;
Kutz, JN .
PHYSICS LETTERS A, 1999, 254 (06) :325-336
[3]  
BRONSKI JC, 1994, NATO ADV SCI INST SE, V320, P21
[4]   Semiclassical eigenvalue distribution of the Zakharov-Shabat eigenvalue problem [J].
Bronski, JC .
PHYSICA D, 1996, 97 (04) :376-397
[5]   SINGULAR SOLUTIONS AND ILL-POSEDNESS FOR THE EVOLUTION OF VORTEX SHEETS [J].
CAFLISCH, RE ;
ORELLANA, OF .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :293-307
[6]  
Deift P, 1998, MEM AM MATH SOC, V131, P1
[7]  
DUBROVIN BA, 1989, RUSS MATH SURV+, V44, P29
[8]  
ERCOLANI N, 1993, 0 DISPERSION LIMIT N
[9]   MULTIPHASE AVERAGING AND THE INVERSE SPECTRAL SOLUTION OF THE KORTEWEG-DEVRIES EQUATION [J].
FLASCHKA, H ;
FOREST, MG ;
MCLAUGHLIN, DW .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) :739-784
[10]   Onset of oscillations in nonsoliton pulses in nonlinear dispersive fibers [J].
Forest, MG ;
McLaughlin, KTR .
JOURNAL OF NONLINEAR SCIENCE, 1998, 8 (01) :43-62