Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae:: current status

被引:345
作者
van Maris, Antonius J. A.
Abbott, Derek A.
Bellissimi, Eleonora
van den Brink, Joost
Kuyper, Marko
Luttik, Marijke A. H.
Wisselink, H. Wouter
Scheffers, W. Alexander
van Dijken, Johannes P.
Pronk, Jack T.
机构
[1] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
[2] Bird Engn BV, NL-3115 HG Schiedam, Netherlands
来源
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY | 2006年 / 90卷 / 04期
关键词
arabinose; ethanol; galacturonic acid; hydrolysate; rhamnose; xylose;
D O I
10.1007/s10482-006-9085-7
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Fuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S. cerevisiae strains readily ferment glucose, mannose and fructose via the Embden-Meyerhof pathway of glycolysis, while galactose is fermented via the Leloir pathway. Construction of yeast strains that efficiently convert other potentially fermentable substrates in plant biomass hydrolysates into ethanol is a major challenge in metabolic engineering. The most abundant of these compounds is xylose. Recent metabolic and evolutionary engineering studies on S. cerevisiae strains that express a fungal xylose isomerase have enabled the rapid and efficient anaerobic fermentation of this pentose. L-Arabinose fermentation, based on the expression of a prokaryotic pathway in S. cerevisiae, has also been established, but needs further optimization before it can be considered for industrial implementation. In addition to these already investigated strategies, possible approaches for metabolic engineering of galacturonic acid and rhamnose fermentation by S. cerevisiae are discussed. An emerging and major challenge is to achieve the rapid transition from proof-of-principle experiments under 'academic' conditions (synthetic media, single substrates or simple substrate mixtures, absence of toxic inhibitors) towards efficient conversion of complex industrial substrate mixtures that contain synergistically acting inhibitors.
引用
收藏
页码:391 / 418
页数:28
相关论文
共 193 条
[21]   THE ROLE OF REDOX BALANCES IN THE ANAEROBIC FERMENTATION OF XYLOSE BY YEASTS [J].
BRUINENBERG, PM ;
DEBOT, PHM ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1983, 18 (05) :287-292
[22]   NADH-LINKED ALDOSE REDUCTASE - THE KEY TO ANAEROBIC ALCOHOLIC FERMENTATION OF XYLOSE BY YEASTS [J].
BRUINENBERG, PM ;
DEBOT, PHM ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1984, 19 (04) :256-260
[23]   THE USE OF STEAMED HEMICELLULOSE AS SUBSTRATE IN MICROBIAL CONVERSIONS [J].
BUCHERT, J ;
PULS, J ;
POUTANEN, K .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1989, 20-1 :309-318
[24]   Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae [J].
Casal, M ;
Cardoso, H ;
Leao, C .
MICROBIOLOGY-UK, 1996, 142 :1385-1390
[25]   CLONING AND IMPROVING THE EXPRESSION OF PICHIA-STIPITIS XYLOSE REDUCTASE GENE IN SACCHAROMYCES-CEREVISIAE [J].
CHEN, ZD ;
HO, NWY .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1993, 39 :135-147
[26]   A NEW PATHWAY OF PENTOSE METABOLISM [J].
CHIANG, C ;
KNIGHT, SG .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1960, 3 (05) :554-559
[27]   Utilisation of biomass for the supply of energy carriers [J].
Claassen, PAM ;
van Lier, JB ;
Contreras, AML ;
van Niel, EWJ ;
Sijtsma, L ;
Stams, AJM ;
de Vries, SS ;
Weusthuis, RA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1999, 52 (06) :741-755
[28]   Cellulase, clostridia, and ethanol [J].
Demain, AL ;
Newcomb, M ;
Wu, JHD .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2005, 69 (01) :124-+
[29]   Screening for L-arabinose fermenting yeasts [J].
Dien, BS ;
Kurtzman, CP ;
Saha, BC ;
Bothast, RJ .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1996, 57-8 :233-242
[30]   Bacteria engineered for fuel ethanol production: current status [J].
Dien, BS ;
Cotta, MA ;
Jeffries, TW .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2003, 63 (03) :258-266