Commentary: Meta-analysis of individual participants' data in genetic epidemiology

被引:81
作者
Ioannidis, JPA [1 ]
Rosenberg, PS
Goedert, JJ
O'Brien, TR
机构
[1] Univ Ioannina, Dept Hyg & Epidemiol, Sch Med, GR-45110 Ioannina, Greece
[2] Fdn Res & Technol Hellas, Ioannina Biomed Res Inst, Ioannina, Greece
[3] Tufts Univ, Sch Med, Dept Med, Boston, MA 02111 USA
[4] NCI, Biostat Branch, Div Canc Epidemiol & Genet, NIH, Rockville, MD USA
[5] NCI, Viral Epidemiol Branch, Div Canc Epidemiol & Genet, NIH, Rockville, MD USA
基金
美国国家卫生研究院;
关键词
bias; epidemiology; genetics; meta-analysis;
D O I
10.1093/aje/kwf031
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The authors summarize their experience in the conduct of meta-analysis of individual participants' data (MIPD) with time-to-event analyses in the field of genetic epidemiology. The MIPD offers many advantages compared with a meta-analysis of the published literature. These include standardization of case definitions, outcomes, and covariates; inclusion of updated information; the ability to fully test the assumptions of time-to-event models; better control of confounding; standardization of analyses of genetic loci that are in linkage disequilibrium; evaluation of alternative genetic models and multiple genes; consistent treatment of subpopulations; assessment of sampling bias; and the establishment of an international collaboration with the capability to prospectively update the meta-analyses and synthesize new information on multiple genetic loci and outcomes. The disadvantages of a MIPD compared with a meta-analysis of the published literature are that a much greater commitment of time and resources is required to collect primary data and to coordinate a large collaborative project. An MIPD may collect additional, unpublished data, but it is possible that not all published data may be contributed at the individual level. For questions that justify the required intensive effort, the MIPD method is a useful tool to help clarify the role of candidate genes in complex human diseases.
引用
收藏
页码:204 / 210
页数:7
相关论文
共 48 条
[11]   Single nucleotide polymorphisms as tools in human genetics [J].
Gray, IC ;
Campbell, DA ;
Spurr, NK .
HUMAN MOLECULAR GENETICS, 2000, 9 (16) :2403-2408
[12]   BIAS IN THE ONE-STEP METHOD FOR POOLING STUDY RESULTS [J].
GREENLAND, S ;
SALVAN, A .
STATISTICS IN MEDICINE, 1990, 9 (03) :247-252
[13]   Effect of the statistical significance of results on the time to completion and publication of randomized efficacy trials [J].
Ioannidis, JPA .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1998, 279 (04) :281-286
[14]   Effects of CCR5-Δ32, CCR2-641, and SDF-1 3′A alleles on HIV-1 disease progression:: An international meta-analysis of individual-patient data [J].
Ioannidis, JPA ;
Rosenberg, PS ;
Goedert, JJ ;
Ashton, LJ ;
Benfield, TL ;
Buchbinder, SP ;
Coutinho, RA ;
Eugen-Olsen, J ;
Gallart, T ;
Katzenstein, TL ;
Kostrikis, LG ;
Kuipers, H ;
Louie, LG ;
Mallal, SA ;
Margolick, JB ;
Martinez, OP ;
Meyer, L ;
Michael, NL ;
Operskalski, E ;
Pantaleo, G ;
Rizzardi, GP ;
Schuitemaker, H ;
Sheppard, HW ;
Stewart, GJ ;
Theodorou, ID ;
Ullum, H ;
Vicenzi, E ;
Vlahov, D ;
Wilkinson, D ;
Workman, C ;
Zagury, JF ;
O'Brien, TR .
ANNALS OF INTERNAL MEDICINE, 2001, 135 (09) :782-795
[15]   Genetic effects on HIV disease progression [J].
Ioannidis, JPA ;
O'Brien, TR ;
Rosenberg, PS ;
Contopoulos-Ioannidis, DG ;
Goedert, JJ .
NATURE MEDICINE, 1998, 4 (05) :536-536
[16]   Replication validity of genetic association studies [J].
Ioannidis, JPA ;
Ntzani, EE ;
Trikalinos, TA ;
Contopoulos-Ioannidis, DG .
NATURE GENETICS, 2001, 29 (03) :306-309
[17]   Evolution of treatment effects over time: Empirical insight from recursive cumulative metaanalyses [J].
Ioannidis, JPA ;
Lau, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :831-836
[18]  
Khoury MJ, 2000, AM J EPIDEMIOL, V151, P2
[19]  
Khoury MJ., 1993, FUNDAMENTALS GENETIC
[20]  
KNOWLER WC, 1988, AM J HUM GENET, V43, P520