Hydrogen Production by a Hyperthermophilic Membrane-Bound Hydrogenase in Water-Soluble Nanolipoprotein Particles

被引:28
作者
Baker, Sarah E. [1 ]
Hopkins, Robert C. [2 ]
Blanchette, Craig D. [1 ]
Walsworth, Vicki L. [1 ]
Sumbad, Rhoda [1 ]
Fischer, Nicholas O. [1 ]
Kuhn, Edward A. [1 ]
Coleman, Matt [1 ]
Chromy, Brett A. [1 ]
Letant, Sonia E. [1 ]
Hoeprich, Paul D. [1 ]
Adams, Michael W. W. [2 ]
Henderson, Paul T. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA
[2] Univ Georgia, Dept Biochem, Athens, GA 30602 USA
关键词
IMMOBILIZATION; BIOHYDROGEN; NANODISCS; PROTEINS;
D O I
10.1021/ja809251f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBHs), poor water solubility. Nanolipoprotein particles (NLPs) formed from apolipoproteins and phospholipids offer a novel means of incorporating MBHs into a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity, and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen-production devices.
引用
收藏
页码:7508 / +
页数:4
相关论文
共 15 条
[1]   Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins [J].
Bayburt, TH ;
Grinkova, YV ;
Sligar, SG .
NANO LETTERS, 2002, 2 (08) :853-856
[2]   Nanodiscs for immobilization of lipid bilayers and membrane receptors: Kinetic analysis of cholera toxin binding to a glycolipid receptor [J].
Borch, Jonas ;
Torta, Federico ;
Sligar, Stephen G. ;
Roepstorff, Peter .
ANALYTICAL CHEMISTRY, 2008, 80 (16) :6245-6252
[3]   Different apolipoproteins impact nanolipoprotein particle formation [J].
Chromy, Brett A. ;
Arroyo, Erin ;
Blanchette, Craig D. ;
Bench, Graham ;
Benner, Henry ;
Cappuccio, Jenny A. ;
Coleman, Matthew A. ;
Henderson, Paul T. ;
Hinz, Angie K. ;
Kuhn, Edward A. ;
Pesavento, Joseph B. ;
Segelke, Brent W. ;
Sulchek, Todd A. ;
Tarasow, Ted ;
Walsworth, Vicki L. ;
Hoeprich, Paul D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (46) :14348-14354
[4]   Enzymatic oxidation of H2 in atmospheric O2:: The electrochemistry of energy generation from trace H2 by aerobic microorganisms [J].
Cracknell, James A. ;
Vincent, Kylie A. ;
Ludwig, Marcus ;
Lenz, Oliver ;
Friedrich, Baerbel ;
Armstrong, Fraser A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (02) :424-+
[5]   Immobilization of active hydrogenases by encapsulation in polymeric porous gels [J].
Elgren, TE ;
Zadvorny, OA ;
Brecht, E ;
Douglas, T ;
Zorin, NA ;
Maroney, MJ ;
Peters, JW .
NANO LETTERS, 2005, 5 (10) :2085-2087
[6]   Hydrogen production under aerobic conditions by membrane-bound hydrogenases from Ralstonia species [J].
Goldet, Gabrielle ;
Wait, Annemarie F. ;
Cracknell, James A. ;
Vincent, Kylie A. ;
Ludwig, Marcus ;
Lenz, Oliver ;
Friedrich, Baerbel ;
Armstrong, Fraser A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (33) :11106-11113
[7]   Fabrication of biomolecule-copolymer hybrid nanovesicles as energy conversion systems [J].
Ho, D ;
Chu, B ;
Lee, H ;
Brooks, EK ;
Kuo, K ;
Montemagno, CD .
NANOTECHNOLOGY, 2005, 16 (12) :3120-3132
[8]   A novel approach for biohydrogen production [J].
Kovacs, Kornel L. ;
Maroti, Gergely ;
Rakhely, Gabor .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (11) :1460-1468
[9]   Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins [J].
Nath, Abhinav ;
Atkins, William M. ;
Sligar, Stephen G. .
BIOCHEMISTRY, 2007, 46 (08) :2059-2069
[10]   Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus [J].
Sapra, R ;
Verhagen, MFJM ;
Adams, MWW .
JOURNAL OF BACTERIOLOGY, 2000, 182 (12) :3423-3428