Mining event-related brain dynamics

被引:1088
作者
Makeig, S [1 ]
Debener, S [1 ]
Onton, J [1 ]
Delorme, A [1 ]
机构
[1] Univ Calif San Diego, Inst Neural Computat, Swartz Ctr Computat Neurosci, La Jolla, CA 92093 USA
关键词
D O I
10.1016/j.tics.2004.03.008
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
This article provides a new, more comprehensive view of event-related brain dynamics founded on an information-based approach to modeling electro-encephalographic (EEG) dynamics. Most EEG research focuses either on peaks 'evoked' in average event-related potentials (ERPs) or on changes 'induced' in the EEG power spectrum by experimental events. Although these measures are nearly complementary, they do not fully model the event-related dynamics in the data, and cannot isolate the signals of the contributing cortical areas. We propose that many ERPs and other EEG features are better viewed as time/frequency perturbations of underlying field potential processes. The new approach combines independent component analysis (ICA), time/frequency analysis, and trial-by-trial visualization that measures EEG source dynamics without requiring an explicit head model.
引用
收藏
页码:204 / 210
页数:7
相关论文
共 49 条
[1]   Natural gradient works efficiently in learning [J].
Amari, S .
NEURAL COMPUTATION, 1998, 10 (02) :251-276
[2]   Complex independent component analysis of frequency-domain electroencephalographic data [J].
Anemüller, J ;
Sejnowski, TJ ;
Makeig, S .
NEURAL NETWORKS, 2003, 16 (09) :1311-1323
[3]   Surface visualization of electromagnetic brain activity [J].
Badea, A ;
Kostopoulos, GK ;
Ioannides, AA .
JOURNAL OF NEUROSCIENCE METHODS, 2003, 127 (02) :137-147
[4]   Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method [J].
Bagshaw, AP ;
Liston, AD ;
Bayford, RH ;
Tizzard, A ;
Gibson, AP ;
Tidswell, AT ;
Sparkes, MK ;
Dehghani, H ;
Binnie, CD ;
Holder, DS .
NEUROIMAGE, 2003, 20 (02) :752-764
[5]   Electromagnetic brain mapping [J].
Baillet, S ;
Mosher, JC ;
Leahy, RM .
IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) :14-30
[6]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[7]   BLIND BEAMFORMING FOR NON-GAUSSIAN SIGNALS [J].
CARDOSO, JF ;
SOULOUMIAC, A .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (06) :362-370
[8]   Spatial eigenmodes and synchronous oscillation: Co-incidence detection in simulated cerebral cortex [J].
Chapman, CL ;
Wright, JJ ;
Bourke, PD .
JOURNAL OF MATHEMATICAL BIOLOGY, 2002, 45 (01) :57-78
[9]   EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis [J].
Delorme, A ;
Makeig, S .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 134 (01) :9-21
[10]  
Elbert T., 1987, Journal of Psychophysiology, V1, P317