A diffuse interface model for alloys with multiple components and phases

被引:97
作者
Garcke, H [1 ]
Nestler, B
Stinner, B
机构
[1] Univ Regensburg, NWF Math 1, D-93040 Regensburg, Germany
[2] FH Karlsruhe, Fachbereich Informat, D-76133 Karlsruhe, Germany
关键词
phase field models; sharp interface models; phase transitions; partial differential equations; alloy systems; matched asymptotic expansions;
D O I
10.1137/S0036139902413143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonisothermal phase field model for alloys with multiple phases and components is derived. The model allows for arbitrary phase diagrams. We relate the model to classical sharp interface models by formally matched asymptotic expansions. In addition we discuss several examples and relate our model to the ones already existing.
引用
收藏
页码:775 / 799
页数:25
相关论文
共 45 条
[1]   Second-order phase field asymptotics for unequal conductivities [J].
Almgren, RF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (06) :2086-2107
[2]   A MATHEMATICAL-MODEL OF DYNAMICS OF NONISOTHERMAL PHASE-SEPARATION [J].
ALT, HW ;
PAWLOW, I .
PHYSICA D-NONLINEAR PHENOMENA, 1992, 59 (04) :389-416
[3]  
[Anonymous], ADV MATH SCI APPL
[4]  
[Anonymous], 1994, PHYSIKALISCHE METALL, DOI DOI 10.1007/978-3-642-87849-7
[5]  
BARRETT JW, 2002, NUMER ANAL, V35, P713
[6]   Phase-field simulation of solidification [J].
Boettinger, WJ ;
Warren, JA ;
Beckermann, C ;
Karma, A .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :163-194
[7]   A multi-phase Mullins-Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem [J].
Bronsard, L ;
Garcke, H ;
Stoth, B .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :481-506
[8]   DYNAMICS OF LAYERED INTERFACES ARISING FROM PHASE BOUNDARIES [J].
CAGINALP, G ;
FIFE, PC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :506-518
[9]   An analysis of phase-field alloys and transition layers [J].
Caginalp, G ;
Xie, WQ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (04) :293-329
[10]   STEFAN AND HELE-SHAW TYPE MODELS AS ASYMPTOTIC LIMITS OF THE PHASE-FIELD EQUATIONS [J].
CAGINALP, G .
PHYSICAL REVIEW A, 1989, 39 (11) :5887-5896