The basal lamina is a physical barrier to herpes simplex virus-mediated gene delivery to mature muscle fibers

被引:77
作者
Huard, J
Feero, WG
Watkins, SC
Hoffman, EP
Rosenblatt, DJ
Glorioso, JC
机构
[1] UNIV PITTSBURGH,SCH MED,DEPT MOL GENET & BIOCHEM,PITTSBURGH,PA 15261
[2] UNIV PITTSBURGH,DEPT CELL BIOL & PHYSIOL,PITTSBURGH,PA 15261
[3] HAMMERSMITH HOSP,ROYAL POSTGRAD MED SCH,MRC,CLIN RES CTR,MUSCLE BIOL GRP,LONDON W12 0NN,ENGLAND
关键词
D O I
10.1128/JVI.70.11.8117-8123.1996
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A major impediment to successful implementation of gene therapy for treatment of muscular dystrophy is the restricted infectivity of mature muscle fibers with viral vectors. This phenomenon has been observed with adenovirus vectors and more recently with herpes simplex virus type 1 (HSV-1)-based vectors. Here we report findings of morphological studies designed to experimentally determine the mechanism underlying the rapid reduction in vector-mediated gene delivery concomitant with the maturation of muscle fibers. Using immunohistochemistry and confocal microscopy, we have colocalized HSV-1 and collagen IV, a major component of the basal lamina, in HSV-1-injected muscles and determined that the virus penetrates and expresses a transgene (lacZ) in muscle fibers of newborn animals but cannot efficiently penetrate adult myofibers. This was observed in normal as well as in immunocompromised animals, suggesting that the Lack of adult myofiber transduction is not a result of an immune response and clearance of the viral vector. Since heparan sulfate proteoglycan, the initial attachment receptor for HSV-1, was shown to be preserved during the maturation of the myofibers by immunofluorescence assay and HSV-1 was able to infect isolated, viable myofibers in vitro, we suggest that the low-level HSV-1 transduction of mature myofibers is not a consequence of the loss of viral attachment sites on the surfaces of mature muscle fibers. Rather, our results indicate that the mature basal lamina acts as a physical barrier to HSV-1 infection of adult myofibers. This conclusion was further supported by the finding that HSV-1 displayed an intermediate level of transduction in mature dy/dy muscle which is defective for normal basal lamina formation, Together, these experiments suggest that efficient HSV vector transduction in mature skeletal muscle requires methods to permeabilize the basal lamina.
引用
收藏
页码:8117 / 8123
页数:7
相关论文
共 24 条
  • [21] LONG-TERM CORRECTION OF MOUSE DYSTROPHIC DEGENERATION BY ADENOVIRUS-MEDIATED TRANSFER OF A MINIDYSTROPHIN GENE
    VINCENT, N
    RAGOT, T
    GILGENKRANTZ, H
    COUTON, D
    CHAFEY, P
    GREGOIRE, A
    BRIAND, P
    KAPLAN, JC
    KAHN, A
    PERRICAUDET, M
    [J]. NATURE GENETICS, 1993, 5 (02) : 130 - 134
  • [22] IMMUNOELECTRON MICROSCOPIC LOCALIZATION OF DYSTROPHIN IN MYOFIBERS
    WATKINS, SC
    HOFFMAN, EP
    SLAYTER, HS
    KUNKEL, LM
    [J]. NATURE, 1988, 333 (6176) : 863 - 866
  • [23] MURINE MUSCULAR-DYSTROPHY CAUSED BY A MUTATION IN THE LAMININ ALPHA-2 (LAMA2) GENE
    XU, H
    WU, XR
    WEWER, UM
    ENGVALL, E
    [J]. NATURE GENETICS, 1994, 8 (03) : 297 - 302
  • [24] DEFECTIVE MUSCLE BASEMENT-MEMBRANE AND LACK OF M-LAMININ IN THE DYSTROPHIC DY/DY MOUSE
    XU, H
    CHRISTMAS, P
    WU, XR
    WEWER, UM
    ENGVALL, E
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (12) : 5572 - 5576