In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues

被引:43
作者
Biris, Alexandru S. [1 ]
Galanzha, Ekaterina I. [2 ]
Li, Zhongrui [1 ]
Mahmood, Meena [1 ]
Xu, Yang [1 ]
Zharov, Vladimir P. [2 ]
机构
[1] Univ Arkansas, Dept Appl Sci, Nanotechnol Ctr, Little Rock, AR 72204 USA
[2] Univ Arkansas Med Sci, Philips Class Laser & Nanomed Labs, Little Rock, AR 72205 USA
关键词
In vivo flow cytometry; Raman spectroscopy; carbon nanotubes; cancer cells; blood and lymph flow; BIOCOMPATIBILITY; BIODISTRIBUTION; NANODIAGNOSTICS; TRANSPORTERS; SPECTROSCOPY; CIRCULATION; DELIVERY; AGENTS;
D O I
10.1117/1.3119145
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Nanoparticles are intensively being explored as contrast agents for medical diagnostics and therapies using various optical methods. We present the first demonstration of the use of time-resolved Raman spectroscopy for in vivo real-time detection of circulating carbon nanotubes (CNTs) or cancer cells labeled with CNTs in the lymph, blood, and tissues of live animals with fast spectral acquisition times of down to few milliseconds. After intravenously administering CNTs in the tail vein of the rat, this technique provides the ability to detect the circulation of CNTs in the blood microvessels of the intact rat ear. The capability of Raman spectroscopy is also demonstrated to monitor, identify, and image the CNTs during their transportation by lymphatics in the rat ear and mesentery. The strong and specific Raman scattering properties of CNTs make it possible to detect in vitro and in vivo single cancer cells (HeLa) tagged with CNTs. In vivo Raman flow cytometry opens a new avenue for multiparameter analysis of circulating nanoparticles with strong Raman scattering properties and their pharmokinetics in blood and lymph systems. Moreover, this technology has the potential for molecular detection and identification of circulating tumor cells, and infections labeled with CNTs. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3119145]
引用
收藏
页数:10
相关论文
共 28 条
[1]   Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes [J].
Becker, Matthew L. ;
Fagan, Jeffrey A. ;
Gallant, Nathan D. ;
Bauer, Barry J. ;
Bajpai, Vardan ;
Hobbie, Erik K. ;
Lacerda, Silvia H. ;
Migler, Kalman B. ;
Jakupciak, John P. .
ADVANCED MATERIALS, 2007, 19 (07) :939-+
[2]   Biomedical applications of functionalised carbon nanotubes [J].
Bianco, A ;
Kostarelos, K ;
Partidos, CD ;
Prato, M .
CHEMICAL COMMUNICATIONS, 2005, (05) :571-577
[3]   Effect of hydrogen on the growth and morphology of single wall carbon nanotubes synthesized on a Fe-Mo/MgO catalytic system [J].
Biris, Alexandru R. ;
Li, Zhongrui ;
Dervishi, Enkeleda ;
Dan Lupu ;
Xu, Yang ;
Saini, Viney ;
Watanabe, Fumiya ;
Biris, Alexandru S. .
PHYSICS LETTERS A, 2008, 372 (17) :3051-3057
[4]   Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells [J].
Cherukuri, P ;
Bachilo, SM ;
Litovsky, SH ;
Weisman, RB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (48) :15638-15639
[5]   Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence [J].
Cherukuri, Paul ;
Gannon, Christopher J. ;
Leeuw, Tonya K. ;
Schmidt, Howard K. ;
Smalley, Richard E. ;
Curley, Steven A. ;
Weisman, R. Bruce .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (50) :18882-18886
[6]   Carbon nanotubes as photoacoustic molecular imaging agents in living mice [J].
De La Zerda, Adam ;
Zavaleta, Cristina ;
Keren, Shay ;
Vaithilingam, Srikant ;
Bodapati, Sunil ;
Liu, Zhuang ;
Levi, Jelena ;
Smith, Bryan R. ;
Ma, Te-Jen ;
Oralkan, Omer ;
Cheng, Zhen ;
Chen, Xiaoyuan ;
Dai, Hongjie ;
Khuri-Yakub, Butrus T. ;
Gambhir, Sanjiv S. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :557-562
[7]   Raman spectroscopy on isolated single wall carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Jorio, A ;
Souza, AG ;
Saito, R .
CARBON, 2002, 40 (12) :2043-2061
[8]   Raman spectroscopy of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Jorio, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 409 (02) :47-99
[9]   In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes [J].
Galanzha, Ekaterina I. ;
Shashkov, Evgeny V. ;
Tuchin, Valery V. ;
Zharov, Vladimir P. .
CYTOMETRY PART A, 2008, 73A (10) :884-894
[10]   Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening [J].
Galanzha, Ekaterina I. ;
Tuchin, Valery V. ;
Zharov, Vladimir P. .
WORLD JOURNAL OF GASTROENTEROLOGY, 2007, 13 (02) :192-218