Deformation mechanisms in free-standing nanoscale thin films:: A quantitative in situ transmission electron microscope study

被引:207
作者
Haque, MA
Saif, MTA
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
D O I
10.1073/pnas.0400066101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have added force and displacement measurement capabilities in the transmission electron microscope (TEM) for in situ quantitative tensile experimentation on nanoscale specimens. Employing the technique, we measured the stress-strain response of several nanoscale free-standing aluminum and gold films subjected to several loading and unloading cycles. We observed low elastic modulus, nonlinear elasticity, lack of work hardening, and macroscopically brittle nature in these metals when their average grain size is 50 nm or less. Direct in situ TEM observation of the absence of dislocations in these films even at high stresses points to a grain-boundary-based mechanism as a dominant contributing factor in nanoscale metal deformation. When grain size is larger, the same metals regain their macroscopic behavior. Addition of quantitative capability makes the TEM a versatile tool for new fundamental investigations on materials and structures at the nanoscale.
引用
收藏
页码:6335 / 6340
页数:6
相关论文
共 48 条
[1]   Overview no. 130 - Size effects in materials due to microstructural and dimensional constraints: A comparative review [J].
Arzt, E .
ACTA MATERIALIA, 1998, 46 (16) :5611-5626
[2]   Elastic and anelastic behavior of materials in small dimensions [J].
Baker, SP ;
Vinci, RP ;
Arias, T .
MRS BULLETIN, 2002, 27 (01) :26-29
[3]   Interface controlled diffusional creep of nanocrystalline pure copper [J].
Cai, B ;
Kong, QP ;
Lu, L ;
Lu, K .
SCRIPTA MATERIALIA, 1999, 41 (07) :755-759
[4]   A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy [J].
Ioannis Chasiotis ;
Wolfgang G. Knauss .
Experimental Mechanics, 2002, 42 (1) :51-57
[5]   Size effects on the mechanical behavior of gold thin films [J].
Espinosa, HD ;
Prorok, BC .
JOURNAL OF MATERIALS SCIENCE, 2003, 38 (20) :4125-4128
[6]   A methodology for determining mechanical properties of freestanding thin films and MEMS materials [J].
Espinosa, HD ;
Prorok, BC ;
Fischer, M .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2003, 51 (01) :47-67
[7]   STRAIN GRADIENT PLASTICITY - THEORY AND EXPERIMENT [J].
FLECK, NA ;
MULLER, GM ;
ASHBY, MF ;
HUTCHINSON, JW .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :475-487
[8]   Grain boundaries of nanocrystalline materials - their widths, compositions, and internal structures [J].
Fultz, B ;
Frase, HN .
HYPERFINE INTERACTIONS, 2000, 130 (1-4) :81-108
[9]   Mechanism-based strain gradient plasticity - I. Theory [J].
Gao, H ;
Huang, Y ;
Nix, WD ;
Hutchinson, JW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1999, 47 (06) :1239-1263
[10]   Nanostructured materials: Basic concepts and microstructure [J].
Gleiter, H .
ACTA MATERIALIA, 2000, 48 (01) :1-29