A Probabilistic Graph-Theoretic Approach to Integrate Multiple Predictions for the Protein-Protein Subnetwork Prediction Challenge

被引:7
作者
Chua, Hon Nian [2 ]
Hugo, Willy [1 ]
Liu, Guimei [1 ]
Li, Xiaoli [2 ]
Wong, Limsoon [1 ]
Ng, See-Kiong [2 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore 117548, Singapore
[2] Inst Infocomm Res, Data Min Dept, Singapore, Singapore
来源
CHALLENGES OF SYSTEMS BIOLOGY: COMMUNITY EFFORTS TO HARNESS BIOLOGICAL COMPLEXITY | 2009年 / 1158卷
关键词
protein-protein interactions; data mining; data integration; GENE ONTOLOGY; DISCOVERY; MOTIFS;
D O I
10.1111/j.1749-6632.2008.03760.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The protein-protein subnetwork prediction challenge presented at the 2nd Dialogue for Reverse Engineering Assessments and Methods (DREAM2) conference is an important computational problem essential to proteomic research. Given a set of proteins from the Saccharomyces cerevisiae (baker's yeast) genome, the task is to rank all possible interactions between the proteins from the most likely to the least likely. To tackle this task, we adopt a graph-based strategy to combine multiple sources of biological data and computational predictions. Using training and testing sets extracted from existing yeast protein-protein interactions, we evaluate our method and show that it can produce better predictions than any of the individual data sources. This technique is then used to produce our entry for the protein-protein subnetwork prediction challenge.
引用
收藏
页码:224 / 233
页数:10
相关论文
共 21 条
  • [1] Normalization of nomenclature for peptide motifs as ligands of modular protein domains
    Aasland, R
    Abrams, C
    Ampe, C
    Ball, LJ
    Bedford, MT
    Cesareni, G
    Gimona, M
    Hurley, JH
    Jarchau, T
    Lehto, VP
    Lemmon, MA
    Linding, R
    Mayer, BJ
    Nagai, M
    Sudol, M
    Walter, U
    Winder, SJ
    [J]. FEBS LETTERS, 2002, 513 (01) : 141 - 144
  • [2] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [3] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [4] Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkh121, 10.1093/nar/gkr1065, 10.1093/nar/gkp985]
  • [5] The GRID: The General Repository for Interaction Datasets
    Breitkreutz, BJ
    Stark, C
    Tyers, M
    [J]. GENOME BIOLOGY, 2003, 4 (03)
  • [6] Chen Jin, 2006, Genome Inform, V17, P284
  • [7] An efficient strategy for extensive integration of diverse biological data for protein function prediction
    Chua, Hon Nian
    Sung, Wing-Kin
    Wong, Limsoon
    [J]. BIOINFORMATICS, 2007, 23 (24) : 3364 - 3373
  • [8] SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent
    Davey, Norman E.
    Shields, Denis C.
    Edwards, Richard J.
    [J]. NUCLEIC ACIDS RESEARCH, 2006, 34 (12) : 3546 - 3554
  • [9] Protein interactions - Two methods for assessment of the reliability of high throughput observations
    Deane, CM
    Salwinski, L
    Xenarios, I
    Eisenberg, D
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (05) : 349 - 356
  • [10] LI H, BIOINFORMATICS, V22, P989