An abstract interpretation of the wavelet dimension function using group representations

被引:24
作者
Baggett, LW [1 ]
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jfan.1999.3551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Methods from abstract harmonic analysis are used to derive a new formulation of the wavelet dimension function and its natural generalizations to higher dimensions. By means of this abstract description, necessary and sufficient conditions are derived for a multiwavelet in N dimensions, relative to an arbitrary expansive integral matrix A, to be a multiwavelet that arises From a multiresolution analysis (MRA), i.e., is an MRA wavelet. Even in the classical case, it is shown that this abstract approach gives new results. (C) 2000 Academic Press.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 11 条
[1]  
BAGGETT L, GEN MULTIRESOLUTION
[2]  
DAI X, WAVELET SETS RN, V2
[3]  
Dai X., 1998, MEMOIRS AM MATH SOC, V134, P27, DOI [10.1090/memo/0640, DOI 10.1090/MEMO/0640]
[4]   Wavelet sets in R-n [J].
Dai, XD ;
Larson, DR ;
Speegle, DM .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (04) :451-456
[5]  
Daubechies I., 1992, 10 LECT WAVELETS
[6]  
Folland G.B., 1995, COURSE ABSTRACT HARM
[7]  
Hernandez E., 1996, 1 COURSE WAVELETS
[8]  
Hernandez E., 1996, J. Fourier Anal. Appl., V2, P329
[10]   Single wavelets in n-dimensions [J].
Soardi, PM ;
Weiland, D .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (03) :299-315