Erythroid development in the mammalian embryo

被引:36
作者
Baron, Margaret H. [1 ,2 ,3 ,4 ,5 ,6 ]
Vacaru, Andrei [1 ,4 ]
Nieves, Johnathan [1 ,4 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Med, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Dept Dev & Regenerat Biol, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Dept Oncol Sci, New York, NY 10029 USA
[4] Icahn Sch Med Mt Sinai, Dept Tisch Canc Inst, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Black Family Stem Cell Inst, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Grad Sch Biomed Sci, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
Primitive erythropoiesis; Transgenic mice; Mammalian embryo; Yolk sac; Fetal liver; Erythroid differentiation; HEMATOPOIETIC STEM-CELLS; YOLK-SAC HEMATOPOIESIS; GENOME-WIDE ANALYSIS; RED-BLOOD-CELLS; PRIMITIVE ERYTHROPOIESIS; MICE LACKING; FETAL LIVER; IN-VIVO; COMPARATIVE RHEOLOGY; GENE-EXPRESSION;
D O I
10.1016/j.bcmd.2013.07.006
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Erythropoiesis is the process by which progenitors for red blood cells are produced and terminally differentiate. In all vertebrates, two morphologically distinct erythroid lineages (primitive, embryonic, and definitive, fetal/adult) form successively within the yolk sac, fetal liver, and marrow and are essential for normal development. Red blood cells have evolved highly specialized functions in oxygen transport, defense against oxidation, and vascular remodeling. Here we review key features of the ontogeny of red blood cell development in mammals, highlight similarities and differences revealed by genetic and gene expression profiling studies, and discuss methods for identifying erythroid cells at different stages of development and differentiation. (C) 2013 Elsevier Inc All rights reserved.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 115 条
[1]   Erythroid-induced commitment of K562 cells results in clusters of differentially expressed genes enriched for specific transcription regulatory elements [J].
Addya, S ;
Keller, MA ;
Delgrosso, K ;
Ponte, CM ;
Vadigepalli, R ;
Gonye, GE ;
Surrey, S .
PHYSIOLOGICAL GENOMICS, 2004, 19 (01) :117-130
[2]   The embryonic origins of erythropoiesis in mammals [J].
Baron, Margaret H. ;
Isern, Joan ;
Fraser, Stuart T. .
BLOOD, 2012, 119 (21) :4828-4837
[3]   EKLF and KLF2 have compensatory roles in embryonic β-globin gene expression and primitive erythropoiesis [J].
Basu, Priyadarshi ;
Lung, Tina K. ;
Lemsaddek, Wafaa ;
Sargent, Thanh Giang ;
Williams, David C., Jr. ;
Basu, Mohua ;
Redmond, Latasha C. ;
Lingrel, Jerry B. ;
Haar, Jack L. ;
Lloyd, Joyce A. .
BLOOD, 2007, 110 (09) :3417-3425
[4]   The Phosphate Transporter PiT1 (Slc20a1) Revealed As a New Essential Gene for Mouse Liver Development [J].
Beck, Laurent ;
Leroy, Christine ;
Beck-Cormier, Sarah ;
Forand, Anne ;
Salauen, Christine ;
Paris, Nadine ;
Bernier, Adeline ;
Urena-Torres, Pablo ;
Prie, Dominique ;
Ollero, Mario ;
Coulombel, Laure ;
Friedlander, Gerard .
PLOS ONE, 2010, 5 (02)
[5]   Three pathways to mature macrophages in the early mouse yolk sac [J].
Bertrand, JY ;
Jalil, A ;
Klaine, M ;
Jung, S ;
Cumano, A ;
Godin, I .
BLOOD, 2005, 106 (09) :3004-3011
[6]   Putting a finger on the switch [J].
Bieker, James J. .
NATURE GENETICS, 2010, 42 (09) :733-734
[7]   The influence of fluid shear stress on the remodeling of the embryonic primary capillary plexus [J].
Blatnik, JS ;
Sung, LPA ;
Schmid-Schönbein, GW .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2005, 4 (04) :211-220
[8]   Shifting foci of hematopoiesis during reconstitution from single stem cells [J].
Cao, YA ;
Wagers, AJ ;
Beilhack, A ;
Dusich, J ;
Bachmann, MH ;
Negrin, RS ;
Weissman, IL ;
Contag, CH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) :221-226
[9]  
Chambers Stuart M, 2007, Cell Stem Cell, V1, P578, DOI 10.1016/j.stem.2007.10.003
[10]   Early ontogeny of the human marrow from long bones: An immunohistochemical study of hematopoiesis and its microenvironment [J].
Charbord, P ;
Tavian, M ;
Humeau, L ;
Peault, B .
BLOOD, 1996, 87 (10) :4109-4119