Measuring nanometer scale gradients in spindle microtubule dynamics using model convolution microscopy

被引:34
作者
Pearson, Chad G.
Gardner, Melissa K.
Paliulis, Leocadia V.
Salmon, E. D.
Odde, David J.
Bloom, Kerry [1 ]
机构
[1] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
[2] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA
[3] Univ Minnesota, Dept Biomed Engn, Minneapolis, MN 55455 USA
关键词
D O I
10.1091/mbc.E06-04-0312
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
A computational model for the budding yeast mitotic spindle predicts a spatial gradient in tubulin turnover that is produced by kinetochore-attached microtubule (kMT) plus-end polymerization and depolymerization dynamics. However, kMTs in yeast are often much shorter than the resolution limit of the light microscope, making visualization of this gradient difficult. To overcome this limitation, we combined digital imaging of fluorescence redistribution after photo-bleaching (FRAP) with model convolution methods to compare computer simulations at nanometer scale resolution to microscopic data. We measured a gradient in microtubule dynamics in yeast spindles at similar to 65-nm spatial intervals. Tubulin turnover is greatest near kinetochores and lowest near the spindle poles. A beta-tubulin mutant with decreased plus-end dynamics preserves the spatial gradient in tubulin turnover at a slower time scale, increases average kinetochore microtubule length similar to 14%, and decreases tension at kinetochores. The beta-tubulin mutant cells have an increased frequency of chromosome loss, suggesting that the accuracy of chromosome segregation is linked to robust kMT plus-end dynamics.
引用
收藏
页码:4069 / 4079
页数:11
相关论文
共 29 条
[21]   The spindle checkpoint: tension versus attachment [J].
Pinsky, BA ;
Biggins, S .
TRENDS IN CELL BIOLOGY, 2005, 15 (09) :486-493
[22]   COMPONENTS OF THE YEAST SPINDLE AND SPINDLE POLE BODY [J].
ROUT, MP ;
KILMARTIN, JV .
JOURNAL OF CELL BIOLOGY, 1990, 111 (05) :1913-1927
[23]  
SHIMAGAWA MM, 2006, IN PRESS CURR BIOL
[24]   Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle [J].
Sprague, BL ;
Pearson, CG ;
Maddox, PS ;
Bloom, KS ;
Salmon, ED ;
Odde, DJ .
BIOPHYSICAL JOURNAL, 2003, 84 (06) :3529-3546
[25]   Molecular mechanisms of kinetochore capture by spindle microtubules [J].
Tanaka, K ;
Mukae, N ;
Dewar, H ;
van Breugel, M ;
James, EK ;
Prescott, AR ;
Antony, C ;
Tanaka, TU .
NATURE, 2005, 434 (7036) :987-994
[26]   Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation [J].
Tanaka, TU ;
Fuchs, J ;
Loidl, J ;
Nasmyth, K .
NATURE CELL BIOLOGY, 2000, 2 (08) :492-499
[27]   Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro [J].
Vasquez, RJ ;
Howell, B ;
Yvon, AMC ;
Wadsworth, P ;
Cassimeris, L .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (06) :973-985
[28]   Localization of Mad2 to kinetochores depends on microtubule attachment, not tension [J].
Waters, JC ;
Chen, RH ;
Murray, AW ;
Salmon, ED .
JOURNAL OF CELL BIOLOGY, 1998, 141 (05) :1181-1191
[29]   3-DIMENSIONAL ULTRASTRUCTURAL ANALYSIS OF THE SACCHAROMYCES-CEREVISIAE MITOTIC SPINDLE [J].
WINEY, M ;
MAMAY, CL ;
OTOOLE, ET ;
MASTRONARDE, DN ;
GIDDINGS, TH ;
MCDONALD, KL ;
MCINTOSH, JR .
JOURNAL OF CELL BIOLOGY, 1995, 129 (06) :1601-1615