Structure of the mammalian ribosomal pre-termination complex associated with eRF1•eRF3•GDPNP

被引:55
作者
des Georges, Amedee [1 ,2 ]
Hashem, Yaser [1 ,2 ]
Unbehaun, Anett [3 ]
Grassucci, Robert A. [1 ,2 ]
Taylor, Derek [4 ]
Hellen, Christopher U. T. [3 ]
Pestova, Tatyana V. [3 ]
Frank, Joachim [1 ,2 ,5 ]
机构
[1] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
[2] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY USA
[3] Suny Downstate Med Ctr, Dept Cell Biol, Brooklyn, NY 11203 USA
[4] Case Western Reserve Univ, Dept Pharmacol, Cleveland, OH 44106 USA
[5] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
关键词
STOP CODON RECOGNITION; EUKARYOTIC TRANSLATION TERMINATION; TRANSFER-RNA HYDROLYSIS; RELEASE FACTOR ERF1; CRYO-EM STRUCTURE; AMINOACYL-TRANSFER-RNA; CRYSTAL-STRUCTURE; SACCHAROMYCES-CEREVISIAE; MOLECULAR-DYNAMICS; GTP HYDROLYSIS;
D O I
10.1093/nar/gkt1279
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic translation termination results from the complex functional interplay between two release factors, eRF1 and eRF3, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, we present a cryoelectron microscopy structure of pre-termination complexes associated with eRF1 center dot eRF3 center dot GDPNP at 9.7-angstrom resolution, which corresponds to the initial pre-GTP hydrolysis stage of factor attachment and stop codon recognition. It reveals the ribosomal positions of eRFs and provides insights into the mechanisms of stop codon recognition and triggering of eRF3's GTPase activity.
引用
收藏
页码:3409 / 3418
页数:10
相关论文
共 57 条
[11]   Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination [J].
Fan-Minogue, Hua ;
Du, Ming ;
Pisarev, Andrey V. ;
Kallmeyer, Adam K. ;
Salas-Marco, Joe ;
Keeling, Kim M. ;
Thompson, Sunnie R. ;
Pestova, Tatyana V. ;
Bedwell, David M. .
MOLECULAR CELL, 2008, 30 (05) :599-609
[12]   Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy [J].
Fischer, Niels ;
Konevega, Andrey L. ;
Wintermeyer, Wolfgang ;
Rodnina, Marina V. ;
Stark, Holger .
NATURE, 2010, 466 (7304) :329-333
[13]   Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1 [J].
Frolova, L ;
Seit-Nebi, A ;
Kisselev, L .
RNA, 2002, 8 (02) :129-136
[14]  
Frolova L, 1996, RNA, V2, P334
[15]   Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis [J].
Frolova, LY ;
Tsivkovskii, RY ;
Sivolobova, GF ;
Oparina, NY ;
Serpinsky, OI ;
Blinov, VM ;
Tatkov, SI ;
Kisselev, LL .
RNA, 1999, 5 (08) :1014-1020
[16]   Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition [J].
Fukunaga, R ;
Yokoyama, S .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (10) :915-922
[17]   VMD: Visual molecular dynamics [J].
Humphrey, W ;
Dalke, A ;
Schulten, K .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1996, 14 (01) :33-38
[18]   Omnipotent decoding potential resides in eukaryotic translation termination factor eRF1 of variant-code organisms and is modulated by the interactions of amino acid sequences within domain 1 [J].
Ito, K ;
Frolova, L ;
Seit-Nebi, A ;
Karamyshev, A ;
Kisselev, L ;
Nakamura, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8494-8499
[19]   Eukaryotic class I translation termination factor eRF1 - the NMR structure and dynamics of the middle domain involved in triggering ribosome-dependent peptidyl-tRNA hydrolysis [J].
Ivanova, Elena V. ;
Kolosov, Peter M. ;
Birdsall, Berry ;
Kelly, Geoff ;
Pastore, Annalisa ;
Kisselev, Lev L. ;
Polshakov, Vladimir I. .
FEBS JOURNAL, 2007, 274 (16) :4223-4237
[20]  
Jackson RJ, 2012, ADV PROTEIN CHEM STR, V86, P45, DOI [10.1016/B978-0-12-386497-0.00002-5, 10.1016/B978-0-12.386497.000002-5]