On a resolvent estimate of the Stokes equation with Neumann-Dirichlet-type boundary condition on an infinite layer

被引:9
作者
Abe, T [1 ]
机构
[1] Waseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Tokyo 1698555, Japan
关键词
Stokes equation; infinite layer; resolvent estimate; Neumann condition;
D O I
10.1002/mma.483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the standard L-P estimate of solutions to the resolvent problem for the Stokes operator on an infinite layer with 'Neumann-Dirichlet-type' boundary condition. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:1007 / 1048
页数:42
相关论文
共 9 条
[1]   On a resolvent estimate of the Stokes equation on an infinite layer [J].
Abe, T ;
Shibata, Y .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (02) :469-497
[2]  
ABE T, STATIONARY PROBLEM S
[3]   On a Resolvent Estimate of the Stokes Equation on an Infinite Layer Part 2, λ=0 Case [J].
Abe, Takayuki ;
Shibata, Yoshihiro .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (03) :245-274
[4]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[5]   GENERALIZED RESOLVENT ESTIMATES FOR THE STOKES SYSTEM IN BOUNDED AND UNBOUNDED-DOMAINS [J].
FARWIG, R ;
SOHR, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (04) :607-643
[6]  
Galdi G.P., 1994, Springer Tracts in Natural Philosophy, V38
[7]   On the Solvability of the Stokes and Navier-Stokes Problems in the Domains That Are Layer-Like at Infinity [J].
Nazarov, S. A. ;
Pileckas, K. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 1999, 1 (01) :78-116
[8]  
NAZAROV SA, 1999, J MATH FLUID MECH, V1, DOI UNSP 131167
[9]  
Triebel H., 2010, Theory of Function Spaces