Edge effects on quantum thermal transport in graphene nanoribbons: Tight-binding calculations

被引:113
作者
Lan, Jinghua [1 ]
Wang, Jian-Sheng [1 ,2 ,3 ]
Gan, Chee Kwan [1 ]
Chin, Sai Kong [1 ]
机构
[1] Inst High Performance Comp, Singapore 138632, Singapore
[2] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[3] Natl Univ Singapore, Ctr Computat Sci & Engn, Singapore 117542, Singapore
关键词
energy gap; graphene; Green's function methods; phonons; thermal conductivity; tight-binding calculations; CONDUCTANCE; DEVICES; WIRES;
D O I
10.1103/PhysRevB.79.115401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the quantum thermal transport properties of graphene nanoribbons (GNRs) with natural edges by combining the Naval Research Laboratory tight-binding approach and the phonon nonequilibrium Green's function method. Thermal transport of GNRs shows substantial dependence on the width due to edge reconstructions. For GNRs with n >= 12, where n is the number of atoms along the direction perpendicular to the ribbon axis, the effect of natural edges is negligible and quantized thermal transport is observed. For GNRs with 2 < n < 12, natural edges destroy quantized thermal transport and reduce thermal conductance significantly. For the narrowest GNR with n=2, perfect quantized thermal transport is restored and a zero-transmission phonon band gap appears at omega=785 similar to 808 cm(-1). By sandwiching the narrowest GNR between two wide GNRs, the band gap is broadened by about ten times. The thermal conductivity of graphene evaluated from our results agrees very well with the recent experimental measurements.
引用
收藏
页数:5
相关论文
共 31 条
[1]   Spin-filtered edge states and quantum hall effect in graphene [J].
Abanin, DA ;
Lee, PA ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 2006, 96 (17)
[2]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[3]   Pure carbon nanoscale devices: Nanotube heterojunctions [J].
Chico, L ;
Crespi, VH ;
Benedict, LX ;
Louie, SG ;
Cohen, ML .
PHYSICAL REVIEW LETTERS, 1996, 76 (06) :971-974
[4]   Insights into the fracture mechanisms and strength of amorphous and nanocomposite carbon [J].
Fyta, MG ;
Remediakis, IN ;
Kelires, PC ;
Papaconstantopoulos, DA .
PHYSICAL REVIEW LETTERS, 2006, 96 (18)
[5]   First-principles calculation of the thermodynamics of InxGa1-xN alloys:: Effect of lattice vibrations [J].
Gan, C. K. ;
Feng, Y. P. ;
Srolovitz, D. J. .
PHYSICAL REVIEW B, 2006, 73 (23)
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[8]  
GHOSH S, 2006, NANO LETT, V5, P1842
[9]   Hypersonic phononic crystals [J].
Gorishnyy, T ;
Ullal, CK ;
Maldovan, M ;
Fytas, G ;
Thomas, EL .
PHYSICAL REVIEW LETTERS, 2005, 94 (11)
[10]   Combinatorial ShcA docking interactions support diversity in tissue morphogenesis [J].
Hardy, W. Rod ;
Li, Lingying ;
Wang, Zhi ;
Sedy, Jiri ;
Fawcett, James ;
Frank, Eric ;
Kucera, Jan ;
Pawson, Tony .
SCIENCE, 2007, 317 (5835) :251-256