Decreased Recombination Through the Use of a Non-Fullerene Acceptor in a 6.4% Efficient Organic Planar Heterojunction Solar Cell

被引:81
作者
Verreet, Bregt [1 ,2 ,3 ]
Cnops, Kjell [1 ,4 ]
Cheyns, David [1 ]
Heremans, Paul [1 ,4 ]
Stesmans, Andre [2 ]
Zango, German [6 ]
Claessens, Christian G. [6 ]
Torres, Tomas [6 ,7 ]
Rand, Barry P. [1 ,3 ,5 ]
机构
[1] IMEC, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Semicond Phys Sect, B-3001 Leuven, Belgium
[3] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[4] Katholieke Univ Leuven, ESAT, B-3001 Leuven, Belgium
[5] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
[6] Univ Autonoma Madrid, Dept Quim Organ, E-28049 Madrid, Spain
[7] IMDEA Nanociencia, Madrid 28049, Spain
关键词
OPEN-CIRCUIT VOLTAGE; PHOTOVOLTAIC CELLS; ELECTRON-ACCEPTOR; SMALL-MOLECULE; SUBPHTHALOCYANINE; DISSOCIATION; SUBNAPHTHALOCYANINE; EXCITONS; ORIGIN; LAYER;
D O I
10.1002/aenm.201301413
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An optimization of several aspects of planar heterojunction solar cells based on boron subnaphthalocyanine chloride (SubNc) as a donor material is presented. The use of hexachlorinated boron subphthalocyanine chloride (Cl-6 SubPc) as an alternative acceptor to C-60 allows for the simultaneous increase of the short-circuit current, fill factor, and open-circuit voltage compared to cells with fullerene acceptors. This is due to the complementary absorption of Cl-6 SubPc versus SubNc, reduced recombination at the hetero-interface, and improved energetic alignment. Furthermore, insertion of a thin diindeno[1,2,3-cd:1', 2', 3'-lm] perylene (DIP) layer at the anode results in a very significant 60% increase in photocurrent owing to reduced exciton quenching at the anode. The simultaneous improvement of all three solar cell parameters results in a power conversion efficiency of 6.4% for a non-fullerene planar heterojunction cell.
引用
收藏
页数:8
相关论文
共 40 条
[1]  
American Society for Testing and Materials, G17303 ASTM
[2]  
[Anonymous], 2013, NEWSLETTER HELIATEK
[3]   Recovering lost excitons in organic photovoltaics using a transparent dissociation layer [J].
Barito, A. ;
Sykes, M. E. ;
Bilby, D. ;
Amonoo, J. ;
Jin, Y. ;
Morris, S. E. ;
Green, P. F. ;
Kim, J. ;
Shtein, M. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (20)
[4]   A Fullerene-Based Organic Exciton Blocking Layer with High Electron Conductivity [J].
Bartynski, Andrew N. ;
Trinh, Cong ;
Panda, Anurag ;
Bergemann, Kevin ;
Lassiter, Brian E. ;
Zimmerman, Jeramy D. ;
Forrest, Stephen R. ;
Thompson, Mark E. .
NANO LETTERS, 2013, 13 (07) :3315-3320
[5]   Boron Subphthalocyanine Chloride as an Electron Acceptor for High-Voltage Fullerene-Free Organic Photovoltaics [J].
Beaumont, Nicola ;
Cho, Sang Wan ;
Sullivan, Paul ;
Newby, David ;
Smith, Kevin E. ;
Jones, Tim S. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (03) :561-566
[7]   Chloroboron (III) subnaphthalocyanine as an electron donor in bulk heterojunction photovoltaic cells [J].
Chen, Guo ;
Sasabe, Hisahiro ;
Sano, Takeshi ;
Wang, Xiao-Feng ;
Hong, Ziruo ;
Kido, Junji ;
Yang, Yang .
NANOTECHNOLOGY, 2013, 24 (48)
[8]   Organic tandem solar cells with complementary absorbing layers and a high open-circuit voltage [J].
Cheyns, D. ;
Rand, B. P. ;
Heremans, P. .
APPLIED PHYSICS LETTERS, 2010, 97 (03)
[9]   Charge Photogeneration in Organic Solar Cells [J].
Clarke, Tracey M. ;
Durrant, James R. .
CHEMICAL REVIEWS, 2010, 110 (11) :6736-6767
[10]   Ideal diode equation for organic heterojunctions. I. Derivation and application [J].
Giebink, N. C. ;
Wiederrecht, G. P. ;
Wasielewski, M. R. ;
Forrest, S. R. .
PHYSICAL REVIEW B, 2010, 82 (15)