Non-equilibrium steady states and transport in the classical lattice φ4 theory

被引:21
作者
Aoki, K
Kusnezov, D
机构
[1] Keio Univ, Dept Phys, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[2] Yale Univ, Sloane Phys Lab, Ctr Theoret Phys, New Haven, CT 06520 USA
关键词
scalar field theory; non-equilibrium steady state; finite temperature field theory; linear response theory; thermal conductivity; local equilibrium;
D O I
10.1016/S0370-2693(00)00189-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the classical non-equilibrium statistical mechanics of scalar field theory on the lattice. Steady states are analyzed near and far from equilibrium. The bulk thermal conductivity is computed, including its temperature dependence. We examine the validity of linear response predictions, as well as properties of the non-equilibrium steady state. We find that the linear response theory applies to visibly curved temperature profiles as long as the thermal gradients are not too strong. We also examine the transition from local equilibrium to local non-equilibrium. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:348 / 354
页数:7
相关论文
共 32 条
[1]   Classical approximation for time-dependent quantum field theory: Diagrammatic analysis for hot scalar fields [J].
Aarts, G ;
Smit, J .
NUCLEAR PHYSICS B, 1998, 511 (1-2) :451-478
[2]   Finiteness of hot classical scalar field theory and the plasmon damping rate [J].
Aarts, G ;
Smit, J .
PHYSICS LETTERS B, 1997, 393 (3-4) :395-402
[3]  
[Anonymous], 1992, SMR
[4]   Hamiltonian dynamics of the two-dimensional lattice φ4 model [J].
Caiani, L ;
Casetti, L ;
Pettini, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (15) :3357-3381
[5]   Geometry of dynamics and phase transitions in classical lattice φ4 theories [J].
Caiani, L ;
Casetti, L ;
Clementi, C ;
Pettini, G ;
Pettini, M ;
Gatto, R .
PHYSICAL REVIEW E, 1998, 57 (04) :3886-3899
[6]   VELOCITY CORRELATION FUNCTIONS IN 2 AND 3 DIMENSIONS [J].
DORFMAN, JR ;
COHEN, EGD .
PHYSICAL REVIEW LETTERS, 1970, 25 (18) :1257-&
[7]   ASYMPTOTIC TIME BEHAVIOR OF CORRELATION FUNCTIONS [J].
ERNST, MH ;
HAUGE, EH ;
VANLEEUW.JM .
PHYSICAL REVIEW LETTERS, 1970, 25 (18) :1254-&
[8]   ASYMPTOTIC TIME BEHAVIOR OF CORRELATION FUNCTIONS .1. KINETIC TERMS [J].
ERNST, MH ;
HAUGE, EH ;
VANLEEUW.JM .
PHYSICAL REVIEW A, 1971, 4 (05) :2055-&
[9]  
Evans D.J., 1990, STAT MECH NONEQUILIB
[10]  
GANGNUS YS, 1978, JETP LETT+, V28, P347