A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid

被引:68
作者
DeFraia, Christopher T. [1 ]
Schmelz, Eric A. [2 ]
Mou, Zhonglin [1 ]
机构
[1] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
[2] Agr Res Serv, Ctr Med Agr & Vet Entomol, USDA, Gainesville, FL 32608 USA
关键词
D O I
10.1186/1746-4811-4-28
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Salicylic acid (SA) is an important signalling molecule in plant defenses against biotrophic pathogens. It is also involved in several other processes such as heat production, flowering, and germination. SA exists in the plant as free SA and as an inert glucose conjugate (salicylic acid 2-O-beta-D-glucoside or SAG). Recently, Huang et al. developed a bacterial biosensor that responds to free SA but not SAG, designated as Acinetobacter sp. ADPWH_lux. In this paper we describe an improved methodology for Acinetobacter sp. ADPWH_lux-based free SA quantification, enabling high-throughput analysis, and present an approach for the quantification of SAG from crude plant extracts. Results: On the basis of the original biosensor-based method, we optimized extraction and quantification. SAG content was determined by treating crude extracts with beta-glucosidase, then measuring the released free SA with the biosensor. beta-glucosidase treatment released more SA in acetate buffer extract than in Luria-Bertani (LB) extract, while enzymatic hydrolysis in either solution released more free SA than acid hydrolysis. The biosensor-based method detected higher amounts of SA in pathogen-infected plants than did a GC/MS-based method. SA quantification of control and pathogen-treated wild-type and sid2 (SA induction-deficient) plants demonstrated the efficacy of the method described. Using the methods detailed here, we were able to detect as little as 0.28 mu g SA/g FW. Samples typically had a standard deviation of up to 25% of the mean. Conclusion: The ability of Acinetobacter sp. ADPWH_lux to detect SA in a complex mixture, combined with the enzymatic hydrolysis of SAG in crude extract, allowed the development of a simple, rapid, and inexpensive method to simultaneously measure free and glucose-conjugated SA. This approach is amenable to a high-throughput format, which would further reduce the cost and time required for biosensor-based SA quantification. Possible applications of this approach include characterization of enzymes involved in SA metabolism, analysis of temporal changes in SA levels, and isolation of mutants with aberrant SA accumulation.
引用
收藏
页数:11
相关论文
共 39 条
[11]   Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses:: Evidence for inhibition of jasmonic acid signaling by SA [J].
Gupta, V ;
Willits, MG ;
Glazebrook, J .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (05) :503-511
[12]   Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana [J].
Heidel, AJ ;
Clarke, JD ;
Antonovics, J ;
Dong, XN .
GENETICS, 2004, 168 (04) :2197-2206
[13]   Chromosomally located gene fusions constructed in Acinetobacter sp ADP1 for the detection of salicylate [J].
Huang, WE ;
Wang, H ;
Zheng, HJ ;
Huang, LF ;
Singer, AC ;
Thompson, I ;
Whiteley, AS .
ENVIRONMENTAL MICROBIOLOGY, 2005, 7 (09) :1339-1348
[14]   Quantitative in situ assay of salicylic acid in tobacco leaves using a genetically modified biosensor strain of Acinetobacter sp ADP1 [J].
Huang, Wei E. ;
Huang, Linfeng ;
Preston, Gail M. ;
Naylor, Martin ;
Carr, John P. ;
Li, Yanhong ;
Singer, Andrew C. ;
Whiteley, Andrew S. ;
Wang, Hui .
PLANT JOURNAL, 2006, 46 (06) :1073-1083
[15]   Salicylic acid-mediated cell death in the Arabidopsis len3 mutant [J].
Ishikawa, Atsushi ;
Kimura, Yuri ;
Yasuda, Michiko ;
Nakashita, Hideo ;
Yoshida, Shigeo .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2006, 70 (06) :1447-1453
[16]   BIOSYNTHESIS AND METABOLISM OF SALICYLIC-ACID [J].
LEE, HI ;
LEON, J ;
RASKIN, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4076-4079
[17]   Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase [J].
Lee, Jiyoung ;
Nam, Jaesung ;
Park, Hyeong Cheol ;
Na, Gunm ;
Miura, Kenji ;
Jin, g Bo Jin ;
Yoo, Chan Yul ;
Baek, Dongwon ;
Kim, Doh Hoon ;
Jeong, Jae Cheol ;
Kim, Donggiun ;
Lee, Sang Yeol ;
Salt, David E. ;
Mengiste, Tesfaye ;
Gong, Qingqiu ;
Ma, Shisong ;
Bohnert, Hans J. ;
Kwak, Sang-Soo ;
Bressan, Ray A. ;
Hasegawa, Paul M. ;
Yun, Dae-Jin .
PLANT JOURNAL, 2007, 49 (01) :79-90
[18]   SALICYLIC-ACID AND PLANT-DISEASE RESISTANCE [J].
MALAMY, J ;
KLESSIG, DF .
PLANT JOURNAL, 1992, 2 (05) :643-654
[19]   SALICYLIC-ACID - A LIKELY ENDOGENOUS SIGNAL IN THE RESISTANCE RESPONSE OF TOBACCO TO VIRAL-INFECTION [J].
MALAMY, J ;
CARR, JP ;
KLESSIG, DF ;
RASKIN, I .
SCIENCE, 1990, 250 (4983) :1002-1004
[20]   INCREASE IN SALICYLIC-ACID AT THE ONSET OF SYSTEMIC ACQUIRED-RESISTANCE IN CUCUMBER [J].
METRAUX, JP ;
SIGNER, H ;
RYALS, J ;
WARD, E ;
WYSSBENZ, M ;
GAUDIN, J ;
RASCHDORF, K ;
SCHMID, E ;
BLUM, W ;
INVERARDI, B .
SCIENCE, 1990, 250 (4983) :1004-1006