Exact free energy functional for a driven diffusive open stationary nonequilibrium system

被引:84
作者
Derrida, B
Lebowitz, JL
Speer, ER
机构
[1] Lab Phys Stat, F-75231 Paris 05, France
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[3] Inst Adv Study, Princeton, NJ 08540 USA
[4] Rutgers State Univ, Dept Phys, New Brunswick, NJ 08903 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.89.030601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the exact probability exp[-LF({rho(x)}) ] of finding a macroscopic density profile rho(x) in the stationary nonequilibrium state of an open driven diffusive system, when the size of the system L-->infinity .F, which plays the role of a nonequilibrium free energy, has a very different structure from that found in the purely diffusive case. As there, F is nonlocal, but the shocks and dynamic phase transitions of the driven system are reflected in nonconvexity of F , in discontinuities in its second derivatives, and in non-Gaussian fluctuations in the steady state.
引用
收藏
页码:306011 / 306014
页数:4
相关论文
共 23 条
[1]   Macroscopic fluctuation theory for stationary non-equilibrium states [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :635-675
[2]   Fluctuations in stationary nonequilibrium states of irreversible processes [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (04) :40601-1
[3]   Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra [J].
Blythe, RA ;
Evans, MR ;
Colaiori, F ;
Essler, FHL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2313-2332
[4]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[5]   Large deviation of the density profile in the steady state of the open symmetric simple exclusion process [J].
Derrida, B ;
Lebowitz, JL ;
Speer, ER .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :599-634
[6]   Free energy functional for nonequilibrium systems: An exactly solvable case [J].
Derrida, B ;
Lebowitz, JL ;
Speer, ER .
PHYSICAL REVIEW LETTERS, 2001, 87 (15) :150601-150601
[7]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[8]  
DERRIDA B, CONDMAT0205353
[9]  
Ellis R., 2006, ENTROPY LARGE DEVIAT
[10]   Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries [J].
Essler, FHL ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13) :3375-3407