Fishing the Target of Antitubercular Compounds: In Silico Target Deconvolution Model Development and Validation

被引:28
作者
Prathipati, Philip [2 ]
Ma, Ngai Ling [2 ]
Manjunatha, Ujjini H. [2 ]
Bender, Andreas [1 ,2 ]
机构
[1] BioMed Res Inc, Novartis Inst, Ctr Prote Chem, Lead Discovery Informat, Cambridge, MA 02139 USA
[2] Novartis Inst Trop Dis, Singapore 138670, Singapore
关键词
TB chemogenomics; antiTB drugs; Tb proteome; target prediction; chemoproteomics; protein domains; model domain extrapolation; in silico target deconvolution; protein-protein interactions; Tuberculosis; drugs; Molecular Target; MYCOBACTERIUM-TUBERCULOSIS; VITRO EVALUATION; GENE ONTOLOGY; PREDICTION; RESISTANCE; MECHANISM; NETWORKS; DRUGS; KANAMYCIN; KNOWLEDGE;
D O I
10.1021/pr8010843
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An in silico, target prediction protocol for antitubercular (antiTB) compounds has been proposed in this work. This protocol is the extension of a recently published 'domain fishing model' (DFM), validating its predicted targets on a set of 42 common antitubercular drugs. For the 23 antiTB compounds of the set which are directly linked to targets (see text for definition), the DFM exhibited a very good target prediction accuracy of 95%. For 19 compounds indirectly linked to targets also, a reasonable pathway/embedded pathway prediction accuracy of 84% was achieved. Since mostly eukaryotic ligand binding data was used for the DFM generation, the high target prediction accuracy for prokaryotes (which is an extrapolation from the training data) was unexpected and provides an additional proof of concept of the DFM. To estimate the general applicability of the model, ligand-target coverage analysis was performed. Here, it was found that, although the DFM only modestly covers the entire TB proteome (32% of all proteins), it captures 70% of the proteome subset targeted by 42 common antiTB compounds, which is in agreement with the good predictive ability of the DFM for the targets of the compounds chosen here. In a prospective validation, the model successfully predicted the targets of new antiTB compounds, CBR-2092 and Amiclenomycin. Together, these findings suggest that in silico, target prediction tools may be a useful supplement to existing, experimental target deconvolution strategies.
引用
收藏
页码:2788 / 2798
页数:11
相关论文
共 50 条
[1]   Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis [J].
Alangaden, GJ ;
Kreiswirth, BN ;
Aouad, A ;
Khetarpal, M ;
Igno, FR ;
Moghazeh, SL ;
Manavathu, EK ;
Lerner, SA .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1998, 42 (05) :1295-1297
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   The Universal Protein Resource (UniProt) [J].
Bairoch, Amos ;
Bougueleret, Lydie ;
Altairac, Severine ;
Amendolia, Valeria ;
Auchincloss, Andrea ;
Puy, Ghislaine Argoud ;
Axelsen, Kristian ;
Baratin, Delphine ;
Blatter, Marie-Claude ;
Boeckmann, Brigitte ;
Bollondi, Laurent ;
Boutet, Emmanuel ;
Quintaje, Silvia Braconi ;
Breuza, Lionel ;
Bridge, Alan ;
Saux, Virginie Bulliard-Le ;
decastro, Edouard ;
Ciampina, Luciane ;
Coral, Danielle ;
Coudert, Elisabeth ;
Cusin, Isabelle ;
David, Fabrice ;
Delbard, Gwennaelle ;
Dornevil, Dolnide ;
Duek-Roggli, Paula ;
Duvaud, Severine ;
Estreicher, Anne ;
Famiglietti, Livia ;
Farriol-Mathis, Nathalie ;
Ferro, Serenella ;
Feuermann, Marc ;
Gasteiger, Elisabeth ;
Gateau, Alain ;
Gehant, Sebastian ;
Gerritsen, Vivienne ;
Gos, Arnaud ;
Gruaz-Gumowski, Nadine ;
Hinz, Ursula ;
Hulo, Chantal ;
Hulo, Nicolas ;
Innocenti, Alessandro ;
James, Janet ;
Jain, Eric ;
Jimenez, Silvia ;
Jungo, Florence ;
Junker, Vivien ;
Keller, Guillaume ;
Lachaize, Corinne ;
Lane-Guermonprez, Lydie ;
Langendijk-Genevaux, Petra .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D190-D195
[4]   Molecular similarity: a key technique in molecular informatics [J].
Bender, A ;
Glen, RC .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2004, 2 (22) :3204-3218
[5]   Chemogenomic data analysis: Prediction of small-molecule targets and the advent of biological fingerprints [J].
Bender, Andreas ;
Young, Daniel W. ;
Jenkins, Jeremy L. ;
Serrano, Martin ;
Mikhailov, Dmitri ;
Clemons, Paul A. ;
Davies, John W. .
COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2007, 10 (08) :719-731
[6]   Use of Ligand Based Models for Protein Domains To Predict Novel Molecular Targets and Applications To Triage Affinity Chromatography Data [J].
Bender, Andreas ;
Mikhailov, Dmitri ;
Glick, Meir ;
Scheiber, Josef ;
Davies, John W. ;
Cleaver, Stephen ;
Marshall, Stephen ;
Tallarico, John A. ;
Harrington, Edmund ;
Cornella-Taracido, Ivan ;
Jenkins, Jeremy L. .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (05) :2575-2585
[7]  
Breinbauer R, 2002, ANGEW CHEM INT EDIT, V41, P2879
[8]   The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology [J].
Camon, E ;
Magrane, M ;
Barrell, D ;
Lee, V ;
Dimmer, E ;
Maslen, J ;
Binns, D ;
Harte, N ;
Lopez, R ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D262-D266
[9]   Towards species-specific antifolates [J].
Chan, DCM ;
Anderson, AC .
CURRENT MEDICINAL CHEMISTRY, 2006, 13 (04) :377-398
[10]   Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro [J].
Chen, Ping ;
Gearhart, Jackie ;
Protopopova, Marina ;
Einck, Leo ;
Nacy, Carol A. .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2006, 58 (02) :332-337