Predicting subcellular localization of proteins in a hybridization space

被引:81
作者
Cai, YD
Chou, KC
机构
[1] UMIST, Biomol Sci Dept, Manchester M60 1QD, Lancs, England
[2] Gordon Life Sci Inst, San Diego, CA 92130 USA
[3] TRIBD, Tianjin, Peoples R China
关键词
D O I
10.1093/bioinformatics/bth054
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The localization of a protein in a cell is closely correlated with its biological function. With the number of sequences entering into databanks rapidly increasing, the importance of developing a powerful high-throughput tool to determine protein subcellular location has become self-evident. In view of this, the Nearest Neighbour Algorithm was developed for predicting the protein subcellular location using the strategy of hybridizing the information derived from the recent development in gene ontology with that from the functional domain composition as well as the pseudo amino acid composition. Results: As a showcase, the same plant and non-plant protein datasets as investigated by the previous investigators were used for demonstration. The overall success rate of the jackknife test for the plant protein dataset was 86%, and that for the non-plant protein dataset 91.2%. These are the highest success rates achieved so far for the two datasets by following a rigorous cross-validation test procedure, suggesting that such a hybrid approach (particularly by incorporating the knowledge of gene ontology) may become a very useful high-throughput tool in the area of bioinformatics, proteomics, as well as molecular cell biology.
引用
收藏
页码:1151 / 1156
页数:6
相关论文
共 38 条
[1]   The InterPro database, an integrated documentation resource for protein families, domains and functional sites [J].
Apweiler, R ;
Attwood, TK ;
Bairoch, A ;
Bateman, A ;
Birney, E ;
Biswas, M ;
Bucher, P ;
Cerutti, T ;
Corpet, F ;
Croning, MDR ;
Durbin, R ;
Falquet, L ;
Fleischmann, W ;
Gouzy, J ;
Hermjakob, H ;
Hulo, N ;
Jonassen, I ;
Kahn, D ;
Kanapin, A ;
Karavidopoulou, Y ;
Lopez, R ;
Marx, B ;
Mulder, NJ ;
Oinn, TM ;
Pagni, M ;
Servant, F ;
Sigrist, CJA ;
Zdobnov, EM .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :37-40
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   EXTRACTION FROM FREE RIBOSOMES OF A FACTOR MEDIATING RIBOSOME DETACHMENT FROM ROUGH MICROSOMES [J].
BLOBEL, G .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1976, 68 (01) :1-7
[4]   Support vector machines for prediction of protein subcellular location by incorporating quasi-sequence-order effect [J].
Cai, YD ;
Liu, XJ ;
Xu, XB ;
Chou, KC .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2002, 84 (02) :343-348
[5]  
Cai Yu-Dong, 2000, Molecular Cell Biology Research Communications, V4, P172, DOI 10.1006/mcbr.2001.0269
[6]   Relation between amino acid composition and cellular location of proteins [J].
Cedano, J ;
Aloy, P ;
PerezPons, JA ;
Querol, E .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 266 (03) :594-600
[7]   Solution structure of BID, an intracellular amplifier of apoptotic signaling [J].
Chou, JJ ;
Li, HL ;
Salvesen, GS ;
Yuan, JY ;
Wagner, G .
CELL, 1999, 96 (05) :615-624
[8]   Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment [J].
Chou, JJ ;
Matsuo, H ;
Duan, H ;
Wagner, G .
CELL, 1998, 94 (02) :171-180
[9]   Prediction of protein subcellular locations by incorporating quasi-sequence-order effect [J].
Chou, KC .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 278 (02) :477-483
[10]   Predicting protein quaternary structure by pseudo amino acid composition [J].
Chou, KC ;
Cai, YD .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2003, 53 (02) :282-289