Continuous-time random walks and traveling fronts -: art. no. 030102

被引:42
作者
Fedotov, S [1 ]
Méndez, V
机构
[1] Univ Manchester, Inst Sci & Technol, Dept Math, Manchester M60 1QD, Lancs, England
[2] Univ Int Catalunya, Dept Med, Barcelona 08190, Spain
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 03期
关键词
D O I
10.1103/PhysRevE.66.030102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a geometric approach to the problem of propagating fronts into an unstable state, valid for an arbitrary continuous-time random walk with a Fisher-Kolmogorov-Petrovski-Piskunov growth/reaction rate. We derive an integral Hamilton-Jacobi type equation for the action functional determining the position of reaction front and its speed. Our method does not rely on the explicit derivation of a differential equation for the density of particles. In particular, we obtain an explicit formula for the propagation speed for the case of anomalous transport involving non-Markovian random processes.
引用
收藏
页数:4
相关论文
共 33 条
[1]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[2]   Speed of fronts of the reaction-diffusion equation [J].
Benguria, RD ;
Depassier, MC .
PHYSICAL REVIEW LETTERS, 1996, 77 (06) :1171-1173
[3]   VALIDITY OF THE LINEAR SPEED SELECTION MECHANISM FOR FRONTS OF THE NONLINEAR DIFFUSION EQUATION [J].
BENGURIA, RD ;
DEPASSIER, MC .
PHYSICAL REVIEW LETTERS, 1994, 73 (16) :2272-2274
[4]   Anomalous transport in random fracture networks [J].
Berkowitz, B ;
Scher, H .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :4038-4041
[5]   Theory of anomalous chemical transport in random fracture networks [J].
Berkowitz, B ;
Scher, H .
PHYSICAL REVIEW E, 1998, 57 (05) :5858-5869
[6]  
Bouchaud J.-P., 2000, THEORY FINANCIAL RIS
[7]   Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts [J].
Ebert, U ;
van Saarloos, W .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 146 (1-4) :1-99
[8]   Non-Markovian random processes and traveling fronts in a reaction-transport system with memory and long-range interactions [J].
Fedotov, S ;
Okuda, Y .
PHYSICAL REVIEW E, 2002, 66 (02) :1-021113
[9]   Memory effects in a turbulent dynamo: Generation and propagation of a large-scale magnetic field [J].
Fedotov, S ;
Ivanov, A ;
Zubarev, A .
PHYSICAL REVIEW E, 2002, 65 (03) :1-036313
[10]   Wave front for a reaction-diffusion system and relativistic Hamilton-Jacobi dynamics [J].
Fedotov, S .
PHYSICAL REVIEW E, 1999, 59 (05) :5040-5044