Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates

被引:237
作者
Boissonneault, Maxime [1 ]
Gambetta, J. M. [2 ,3 ]
Blais, Alexandre [1 ]
机构
[1] Univ Sherbrooke, Dept Phys & Regroupement Quebecois Mat Pointe, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 01期
关键词
Jaynes-Cummings model; lumped parameter networks; nonlinear optics; quantum electrodynamics; quantum theory; QUANTUM; ENTANGLEMENT; STATES; ATOMS;
D O I
10.1103/PhysRevA.79.013819
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Superconducting electrical circuits can be used to study the physics of cavity quantum electrodynamics (QED) in new regimes, therefore realizing circuit QED. For quantum-information processing and quantum optics, an interesting regime of circuit QED is the dispersive regime, where the detuning between the qubit transition frequency and the resonator frequency is much larger than the interaction strength. In this paper, we investigate how nonlinear corrections to the dispersive regime affect the measurement process. We find that in the presence of pure qubit dephasing, photon population of the resonator used for the measurement of the qubit act as an effective heat bath, inducing incoherent relaxation and excitation of the qubit. Measurement thus induces both dephasing and mixing of the qubit, something that can reduce the quantum nondemolition aspect of the readout. Using quantum trajectory theory, we show that this heat bath can induce quantum jumps in the qubit state. Nonlinear effects can also reduce the achievable signal-to-noise ratio of a homodyne measurement of the voltage.
引用
收藏
页数:17
相关论文
共 46 条
[1]   Several small Josephson junctions in a resonant cavity: Deviation from the Dicke model [J].
Al-Saidi, WA ;
Stroud, D .
PHYSICAL REVIEW B, 2002, 65 (22) :1-10
[2]   Temperature square dependence of the low frequency 1/f charge noise in the Josephson junction qubits [J].
Astafiev, O ;
Pashkin, YA ;
Nakamura, Y ;
Yamamoto, T ;
Tsai, JS .
PHYSICAL REVIEW LETTERS, 2006, 96 (13)
[3]   Quantum noise in the Josephson charge qubit [J].
Astafiev, O ;
Pashkin, YA ;
Nakamura, Y ;
Yamamoto, T ;
Tsai, JS .
PHYSICAL REVIEW LETTERS, 2004, 93 (26)
[4]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[5]   Tunable coupling of superconducting qubits [J].
Blais, A ;
van den Brink, AM ;
Zagoskin, AM .
PHYSICAL REVIEW LETTERS, 2003, 90 (12) :4
[6]   Quantum-information processing with circuit quantum electrodynamics [J].
Blais, Alexandre ;
Gambetta, Jay ;
Wallraff, A. ;
Schuster, D. I. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 75 (03)
[7]   Observation of the vacuum Rabi spectrum for one trapped atom [J].
Boca, A ;
Miller, R ;
Birnbaum, KM ;
Boozer, AD ;
McKeever, J ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)
[8]   Nonlinear dispersive regime of cavity QED: The dressed dephasing model [J].
Boissonneault, Maxime ;
Gambetta, J. M. ;
Blais, Alexandre .
PHYSICAL REVIEW A, 2008, 77 (06)
[9]   Quantum nondemolition readout using a Josephson bifurcation amplifier [J].
Boulant, N. ;
Ithier, G. ;
Meeson, P. ;
Nguyen, F. ;
Vion, D. ;
Esteve, D. ;
Siddiqi, I. ;
Vijay, R. ;
Rigetti, C. ;
Pierre, F. .
PHYSICAL REVIEW B, 2007, 76 (01)
[10]  
BUISSON O, 2001, MACROSCOPIC QUANTUM