Minimum Renyi and Wehrl entropies at the output of bosonic channels

被引:42
作者
Giovannetti, V
Lloyd, S
Maccone, L
Shapiro, JH
Yen, BJ
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.70.022328
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The minimum Renyi and Wehrl output entropies are found for bosonic channels in which the signal photons are either randomly displaced by a Gaussian distribution (classical-noise channel), or coupled to a thermal environment through lossy propagation (thermal-noise channel). It is shown that the Renyi output entropies of integer orders zgreater than or equal to2 and the Wehrl output entropy are minimized when the channel input is a coherent state.
引用
收藏
页码:022328 / 1
页数:8
相关论文
共 29 条
[1]  
Amosov G. G., 2000, Problems of Information Transmission, V36, P305
[2]   INFORMATION-THEORETIC MEASURE OF UNCERTAINTY DUE TO QUANTUM AND THERMAL FLUCTUATIONS [J].
ANDERSON, A ;
HALLIWELL, JJ .
PHYSICAL REVIEW D, 1993, 48 (06) :2753-2765
[3]  
Beck C., 1993, THERMODYNAMICS CHAOT
[4]   Quantum information theory [J].
Bennett, CH ;
Shor, PW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) :2724-2742
[5]   Bounds on general entropy measures [J].
Berry, DW ;
Sanders, BC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (49) :12255-12265
[6]  
CAVES C, QUANTPH0401149
[7]   Additivity properties of a Gaussian channel [J].
Giovannetti, V ;
Lloyd, S .
PHYSICAL REVIEW A, 2004, 69 (06) :062307-1
[8]  
GIOVANNETTI V, IN PRESS PHYS REV A
[9]  
Gradshteyn I. S., 2000, TABLE INTEGRALS SERI
[10]  
Grenander U, 1958, TOEPLITZ FORMS THEIR