Minimum Renyi and Wehrl entropies at the output of bosonic channels

被引:42
作者
Giovannetti, V
Lloyd, S
Maccone, L
Shapiro, JH
Yen, BJ
机构
[1] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.70.022328
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The minimum Renyi and Wehrl output entropies are found for bosonic channels in which the signal photons are either randomly displaced by a Gaussian distribution (classical-noise channel), or coupled to a thermal environment through lossy propagation (thermal-noise channel). It is shown that the Renyi output entropies of integer orders zgreater than or equal to2 and the Wehrl output entropy are minimized when the channel input is a coherent state.
引用
收藏
页码:022328 / 1
页数:8
相关论文
共 29 条
[11]   Quantum information and correlation bounds [J].
Hall, MJW .
PHYSICAL REVIEW A, 1997, 55 (01) :100-113
[12]   GAUSSIAN-NOISE AND QUANTUM-OPTICAL COMMUNICATION [J].
HALL, MJW .
PHYSICAL REVIEW A, 1994, 50 (04) :3295-3303
[13]   REALISTIC PERFORMANCE OF THE MAXIMUM INFORMATION CHANNEL [J].
HALL, MJW ;
OROURKE, MJ .
QUANTUM OPTICS, 1993, 5 (03) :161-180
[14]   Inequalities between entropy and index of coincidence derived from information diagrams [J].
Harremoës, P ;
Topsoe, F .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2944-2960
[15]  
HOLEVO AS, QUANTPH0306196
[16]   Bounds on entanglement in qudit subsystems [J].
Kendon, VM ;
Zyczkowski, K ;
Munro, WJ .
PHYSICAL REVIEW A, 2002, 66 (06) :7
[17]   The capacity of the quantum depolarizing channel [J].
King, C .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) :221-229
[18]   Minimal entropy of states emerging from noisy quantum channels [J].
King, C ;
Ruskai, MB .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (01) :192-209
[19]   PROOF OF AN ENTROPY CONJECTURE OF WEHRL [J].
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 62 (01) :35-41
[20]  
MINTERT F, QUANTPH0307169