Geodesic stability, Lyapunov exponents, and quasinormal modes

被引:679
作者
Cardoso, Vitor [1 ,5 ]
Miranda, Alex S. [2 ]
Berti, Emanuele [5 ,6 ]
Witek, Helvi [1 ,3 ]
Zanchin, Vilson T. [4 ]
机构
[1] Inst Super Tecn, Dept Fis, Ctr Multidisciplinar Astrofis CENTRA, P-1049001 Lisbon, Portugal
[2] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, Brazil
[3] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
[4] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Santo Andre, SP, Brazil
[5] Univ Mississippi, Dept Phys & Astron, University, MS 38677 USA
[6] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 06期
关键词
ROTATING BLACK-HOLES; PERTURBATIONS; EQUATION; STAR;
D O I
10.1103/PhysRevD.79.064016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Geodesic motion determines important features of spacetimes. Null unstable geodesics are closely related to the appearance of compact objects to external observers and have been associated with the characteristic modes of black holes. By computing the Lyapunov exponent, which is the inverse of the instability time scale associated with this geodesic motion, we show that, in the eikonal limit, quasinormal modes of black holes in any dimensions are determined by the parameters of the circular null geodesics. This result is independent of the field equations and only assumes a stationary, spherically symmetric and asymptotically flat line element, but it does not seem to be easily extendable to anti-de Sitter spacetimes. We further show that (i) in spacetime dimensions greater than four, equatorial circular timelike geodesics in a Myers-Perry black-hole background are unstable, and (ii) the instability time scale of equatorial null geodesics in Myers-Perry spacetimes has a local minimum for spacetimes of dimension d >= 6.
引用
收藏
页数:13
相关论文
共 64 条
  • [11] Asymptotic quasinormal modes of Reissner-Nordstrom and Kerr black holes
    Berti, E
    Kokkotas, KD
    [J]. PHYSICAL REVIEW D, 2003, 68 (04)
  • [12] Stability of five-dimensional rotating black holes projected on the brane
    Berti, E
    Kokkotas, KD
    Papantonopoulos, E
    [J]. PHYSICAL REVIEW D, 2003, 68 (06):
  • [13] Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis
    Berti, Emanuele
    Cardoso, Vitor
    [J]. PHYSICAL REVIEW D, 2007, 76 (06)
  • [14] CHAOS AROUND A BLACK-HOLE
    BOMBELLI, L
    CALZETTA, E
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (12) : 2573 - 2599
  • [15] Scalar perturbations of higher dimensional rotating and ultraspinning black holes
    Cardoso, V
    Siopsis, G
    Yoshida, S
    [J]. PHYSICAL REVIEW D, 2005, 71 (02): : 024019 - 1
  • [16] Superradiant instabilities of rotating black branes and strings
    Cardoso, V
    Yoshida, S
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2005, (07): : 189 - 211
  • [17] Quasinormal frequencies of Schwarzschild black holes in anti-de Sitter spacetimes: A complete study of the overtone asymptotic behavior
    Cardoso, V
    Konoplya, R
    Lemos, JPS
    [J]. PHYSICAL REVIEW D, 2003, 68 (04):
  • [18] Quasinormal modes of the near extremal Schwarzschild-de Sitter black hole
    Cardoso, V
    Lemos, JPS
    [J]. PHYSICAL REVIEW D, 2003, 67 (08)
  • [19] Scaler, electromagnetic, and Weyl perturbations of BTZ black holes: Quasinormal modes
    Cardoso, V
    Lemos, JPS
    [J]. PHYSICAL REVIEW D, 2001, 63 (12): : 6
  • [20] Chandrasekhar S., 1998, The Mathematical Theory of Black Holes