Autocalibrating parallel imaging of in vivo trabecular bone micro architecture at 3 Tesla

被引:26
作者
Banerjee, S.
Choudhury, S.
Han, E. T.
Brau, A. C. S.
Morze, C. V.
Vigneron, D. B.
Majumdar, S.
机构
[1] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94158 USA
[2] Univ Calif Berkeley, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA
[3] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[4] GE Healthcare, Global Appl Sci Lab, Menlo Pk, CA USA
关键词
partially parallel imaging; GRAPPA; trabecular bone microarchitecture; high resolution; steady state free precision;
D O I
10.1002/mrm.21059
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In this work the generalized autocalibrating partially parallel acquisition (GRAPPA) technique was implemented with modified reconstruction and applied to in vivo high-resolution (HR) magnetic resonance imaging (MRI) of the trabecular bone microarchitecture at 3 Tesla M with a multiple-acquisition balanced steady-state free precession (b-SSFP) sequence. Trabecular bone is made up of a network of microstructures (80140 mu m), and its structural deterioration is associated with the skeletal metabolic disorder osteoporosis. HR-MRI is a promising noninvasive tool for assessing the trabecular microarchitecture in vivo, but it involves long acquisition times. Using partially parallel imaging (PPI) to accelerate the acquisition may help mitigate this shortcoming and allow more flexibility in protocol design. In this study the effects of GRAPPA-based reconstruction on image characteristics and the measurement of trabecular bone structural parameters were evaluated. Initial studies showed that image quality and depiction of microstructure were preserved in the GRAPPA-based reconstruction, indicating the feasibility of PIPI in HR-MRI of trabecular bone. The results also demonstrated the potential of PPI for increasing the signal-tonoise ratio (SNR) efficiency of multiple-acquisition b-SSFP imaging protocols.
引用
收藏
页码:1075 / 1084
页数:10
相关论文
共 34 条
[1]   Application of refocused steady-state free-precession methods at 1.5 and 3 T to in vivo high-resolution MRI of trabecular bone: Simulations and experiments [J].
Banerjee, S ;
Han, ET ;
Krug, R ;
Newitt, DC ;
Majumdar, S .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2005, 21 (06) :818-825
[2]  
BANERJEE S, 2006, MED IMAGING
[3]   Analysis of multiple-acquisition SSFP [J].
Bangerter, NK ;
Hargreaves, BA ;
Vasanawala, SS ;
Pauly, JM ;
Gold, GE ;
Nishimura, DG .
MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (05) :1038-1047
[4]  
Blaimer Martin, 2004, Top Magn Reson Imaging, V15, P223, DOI 10.1097/01.rmr.0000136558.09801.dd
[5]  
Breuer FA, 2005, P 13 ANN M ISMRM MIA, P2668
[6]  
CARBALLIDO J, 2005, P 13 ANN M ISMRM MIA, P1988
[7]  
CASSELMAN JW, 1993, AM J NEURORADIOL, V14, P47
[8]  
DIETRICH O, 2005, P 13 ANN M ISMRM MIA, P158
[9]   Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [J].
Griswold, MA ;
Jakob, PM ;
Heidemann, RM ;
Nittka, M ;
Jellus, V ;
Wang, JM ;
Kiefer, B ;
Haase, A .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (06) :1202-1210
[10]   Field-of-view limitations in parallel imaging [J].
Griswold, MA ;
Kannengiesser, S ;
Heidemann, RM ;
Wang, JM ;
Jakob, PM .
MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (05) :1118-1126