Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations

被引:210
作者
Cooper, Adam J. [1 ]
Wilson, Neil R. [2 ]
Kinloch, Ian A. [3 ]
Dryfe, Robert A. W. [1 ]
机构
[1] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[3] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
CATHODIC BEHAVIOR; ION TRANSFER; GRAPHITE; REDUCTION; EXPANSION; ALKALI; FILMS;
D O I
10.1016/j.carbon.2013.09.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a non-oxidative production route to few layer graphene via the electrochemical intercalation of tetraalkylammonium cations into pristine graphite. Two forms of graphite have been studied as the source material with each yielding a slightly different result. Highly orientated pyrolytic graphite (HOPG) offers greater advantages in terms of the exfoliate size but the source electrode set up introduces difficulties to the procedure and requires the use of sonication. Using a graphite rod electrode, few layer graphene flakes (2 nm thickness) are formed directly although the flake diameters from this source are typically. small (ca. 100-200 nm). Significantly, for a solvent based route, the graphite rod does not require ultrasonication or any secondary physical processing of the resulting dispersion. Flakes have been characterized using Raman spectroscopy, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:340 / 350
页数:11
相关论文
共 43 条
[1]   Characterization and adsorption properties of tetrabutylammonium montmorillonite (TBAM) clay:: Thermodynamic and kinetic calculations [J].
Akçay, M .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2006, 296 (01) :16-21
[2]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[3]   High-Throughput Synthesis of Graphene by Intercalation - Exfoliation of Graphite Oxide and Study of Ionic Screening in Graphene Transistor [J].
Ang, Priscilla Kailian ;
Wang, Shuai ;
Bao, Qiaoliang ;
Thong, John T. L. ;
Loh, Kian Ping .
ACS NANO, 2009, 3 (11) :3587-3594
[4]   IRREVERSIBLE CATHODIC BEHAVIOR OF GRAPHITE IN THE PRESENCE OF SOME MIXTURES OF ONIUM SALTS [J].
BERNARD, G ;
SIMONET, J .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1979, 96 (02) :249-253
[5]  
BESENHAR.JO, 1974, J ELECTROANAL CHEM, V53, P329, DOI 10.1016/S0022-0728(74)80146-4
[6]   ELECTROCHEMICAL PREPARATION AND PROPERTIES OF IONIC ALKALI METAL- AND NR4-GRAPHITE INTERCALATION COMPOUNDS IN ORGANIC ELECTROLYTES [J].
BESENHARD, JO .
CARBON, 1976, 14 (02) :111-115
[7]   ELECTRONIC CONDUCTIVITY AND STRUCTURE OF DMSO-SOLVATED A-+-GRAPHITE AND NR-4(+)-GRAPHITE INTERCALATION COMPOUNDS [J].
BESENHARD, JO ;
MOHWALD, H ;
NICKL, JJ .
CARBON, 1980, 18 (06) :399-405
[8]  
BREANT M, 1968, B SOC CHIM FR, P5065
[9]   Negative Electrodes in Rechargeable Lithium Ion Batteries - Influence of Graphite Surface Modification on the Formation of the Solid Electrolyte Interphase [J].
Buqa, H. ;
Blyth, R. I. R. ;
Golob, P. ;
Evers, B. ;
Schneider, I. ;
Alvarez, M. V. Santis ;
Hofer, F. ;
Netzer, F. P. ;
Ramsey, M. G. ;
Winter, M. ;
Besenhard, J. O. .
IONICS, 2000, 6 (3-4) :172-179
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162