Faster shortest-path algorithms for planar graphs

被引:239
作者
Henzinger, MR
Klein, P
Rao, S
Subramanian, S
机构
[1] BROWN UNIV,DEPT COMP SCI,PROVIDENCE,RI 02912
[2] BELL NO RES,RES TRIANGLE PK,NC
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcss.1997.1493
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We give a linear-time algorithm for single-source shortest paths in planar graphs with nonnegative edge-lengths. Our algorithm also yields a linear-time algorithm for maximum flow in a planar graph with the source and sink on the same face. For the case where negative edge-lengths are allowed, we give an algorithm requiring O(n(4/3) log(nL)) time, where L is the absolute value of the most negative length. This algorithm can be used to obtain similar bounds for computing a feasible flow in a planar network, for finding a perfect matching in a planar bi partite graph, a nd for finding a maxim um flow in a planar graph when the source and sink are not on the same face. We also give parallel and dynamic versions of these algorithms. (C) 1997 Academic Press.
引用
收藏
页码:3 / 23
页数:21
相关论文
共 28 条
[1]   FASTER ALGORITHMS FOR THE SHORTEST-PATH PROBLEM [J].
AHUJA, RK ;
MEHLHORN, K ;
ORLIN, JB ;
TARJAN, RE .
JOURNAL OF THE ACM, 1990, 37 (02) :213-223
[2]  
Alon N., 1990, J AM MATH SOC, V3, P801
[3]  
COHEN E, 1993, P 5 ANN S PAR ALG AR
[4]  
FREDERICKSON GN, 1987, SIAM J COMPUT, V16, P1004, DOI 10.1137/0216064
[5]   DATA-STRUCTURES FOR ONLINE UPDATING OF MINIMUM SPANNING-TREES, WITH APPLICATIONS [J].
FREDERICKSON, GN .
SIAM JOURNAL ON COMPUTING, 1985, 14 (04) :781-798
[6]   AN OPTIMAL ALGORITHM FOR SELECTION IN A MIN-HEAP [J].
FREDERICKSON, GN .
INFORMATION AND COMPUTATION, 1993, 104 (02) :197-214
[7]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615
[8]  
FREDMAN ML, 1990, P 31 ANN IEEE S FDN
[9]  
GABOW HN, 1988, P 20 ANN ACM S THEOR
[10]  
GALIL Z, 1991, P 18 INT C AUT LANG