Faster shortest-path algorithms for planar graphs

被引:239
作者
Henzinger, MR
Klein, P
Rao, S
Subramanian, S
机构
[1] BROWN UNIV,DEPT COMP SCI,PROVIDENCE,RI 02912
[2] BELL NO RES,RES TRIANGLE PK,NC
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcss.1997.1493
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We give a linear-time algorithm for single-source shortest paths in planar graphs with nonnegative edge-lengths. Our algorithm also yields a linear-time algorithm for maximum flow in a planar graph with the source and sink on the same face. For the case where negative edge-lengths are allowed, we give an algorithm requiring O(n(4/3) log(nL)) time, where L is the absolute value of the most negative length. This algorithm can be used to obtain similar bounds for computing a feasible flow in a planar network, for finding a perfect matching in a planar bi partite graph, a nd for finding a maxim um flow in a planar graph when the source and sink are not on the same face. We also give parallel and dynamic versions of these algorithms. (C) 1997 Academic Press.
引用
收藏
页码:3 / 23
页数:21
相关论文
共 28 条
[11]  
Galil Z., 1992, P 24 ANN ACM S THEOR
[12]  
GAZIT H, 1987, P 28 ANN IEEE S FDN
[13]   A SEPARATOR THEOREM FOR GRAPHS OF BOUNDED GENUS [J].
GILBERT, JR ;
HUTCHINSON, JP ;
TARJAN, RE .
JOURNAL OF ALGORITHMS, 1984, 5 (03) :391-407
[14]   SCALING ALGORITHMS FOR THE SHORTEST PATHS PROBLEM [J].
GOLDBERG, AV .
SIAM JOURNAL ON COMPUTING, 1995, 24 (03) :494-504
[15]   Planar separators and parallel polygon triangulation [J].
Goodrich, MT .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1995, 51 (03) :374-389
[16]   AN O(N LOG2 N) ALGORITHM FOR MAXIMUM FLOW IN UNDIRECTED PLANAR NETWORKS [J].
HASSIN, R ;
JOHNSON, DB .
SIAM JOURNAL ON COMPUTING, 1985, 14 (03) :612-624
[17]   MAXIMUM FLOW IN (S,T) PLANAR NETWORKS [J].
HASSIN, R .
INFORMATION PROCESSING LETTERS, 1981, 13 (03) :107-107
[18]   PARALLEL ALGORITHMS FOR MINIMUM CUTS AND MAXIMUM FLOWS IN PLANAR NETWORKS [J].
JOHNSON, DB .
JOURNAL OF THE ACM, 1987, 34 (04) :950-967
[19]  
JOHNSON DB, 1982, P 20 ANN ALL C COMM
[20]   FASTER APPROXIMATION ALGORITHMS FOR THE UNIT CAPACITY CONCURRENT FLOW PROBLEM WITH APPLICATIONS TO ROUTING AND FINDING SPARSE CUTS [J].
KLEIN, P ;
PLOTKIN, S ;
STEIN, C ;
TARDOS, E .
SIAM JOURNAL ON COMPUTING, 1994, 23 (03) :466-487