Computational identification of transcriptional regulatory elements in DNA sequence

被引:87
作者
GuhaThakurta, Debraj [1 ]
机构
[1] Rosetta Inpharmat LLC, Res Genet Div, Seattle, WA 98109 USA
关键词
D O I
10.1093/nar/gkl372
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification and annotation of all the functional elements in the genome, including genes and the regulatory sequences, is a fundamental challenge in genomics and computational biology. Since regulatory elements are frequently short and variable, their identification and discovery using computational algorithms is difficult. However, significant advances have been made in the computational methods for modeling and detection of DNA regulatory elements. The availability of complete genome sequence from multiple organisms, as well as mRNA profiling and high-throughput experimental methods for mapping protein-binding sites in DNA, have contributed to the development of methods that utilize these auxiliary data to inform the detection of transcriptional regulatory elements. Progress is also being made in the identification of cis-regulatory modules and higher order structures of the regulatory sequences, which is essential to the understanding of transcription regulation in the metazoan genomes. This article reviews the computational approaches for modeling and identification of genomic regulatory elements, with an emphasis on the recent developments, and current challenges.
引用
收藏
页码:3585 / 3598
页数:14
相关论文
共 188 条
[21]   Aligning multiple genomic sequences with the threaded blockset aligner [J].
Blanchette, M ;
Kent, WJ ;
Riemer, C ;
Elnitski, L ;
Smit, AFA ;
Roskin, KM ;
Baertsch, R ;
Rosenbloom, K ;
Clawson, H ;
Green, ED ;
Haussler, D ;
Miller, W .
GENOME RESEARCH, 2004, 14 (04) :708-715
[22]   FootPrinter: a program designed for phylogenetic footprinting [J].
Blanchette, M ;
Tompa, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3840-3842
[23]   Discovery of regulatory elements by a computational method for phylogenetic footprinting [J].
Blanchette, M ;
Tompa, M .
GENOME RESEARCH, 2002, 12 (05) :739-748
[24]  
Blanchette M, 2000, Proc Int Conf Intell Syst Mol Biol, V8, P37
[25]   Phylogenetic shadowing of primate sequences to find functional regions of the human genome [J].
Boffelli, D ;
McAuliffe, J ;
Ovcharenko, D ;
Lewis, KD ;
Ovcharenko, I ;
Pachter, L ;
Rubin, EM .
SCIENCE, 2003, 299 (5611) :1391-1394
[26]   Modeling DNA sequence-based cis-regulatory gene networks [J].
Bolouri, H ;
Davidson, EH .
DEVELOPMENTAL BIOLOGY, 2002, 246 (01) :2-13
[27]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956
[28]   MAVID: Constrained ancestral alignment of multiple sequences [J].
Bray, N ;
Pachter, L .
GENOME RESEARCH, 2004, 14 (04) :693-699
[29]   Approaches to the automatic discovery of patterns in biosequences [J].
Brazma, A ;
Jonassen, I ;
Eidhammer, I ;
Gilbert, D .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1998, 5 (02) :279-305
[30]   Predicting gene regulatory elements in silico on a genomic scale [J].
Brazma, A ;
Jonassen, I ;
Vilo, J ;
Ukkonen, E .
GENOME RESEARCH, 1998, 8 (11) :1202-1215