Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications

被引:67
作者
Verevkin, A
Pearlman, A
Slysz, W
Zhang, J
Currie, M
Korneev, A
Chulkova, G
Okunev, O
Kouminov, P
Smirnov, K
Voronov, B
Gol'tsman, GN
Sobolewski, R
机构
[1] Univ Rochester, Dept Elect & Comp Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Laser Energet Lab, Rochester, NY 14627 USA
[3] Inst Electr Mat Technol, PL-02668 Warsaw, Poland
[4] USN, Res Lab, Div Opt Sci, Washington, DC 20375 USA
[5] Moscow State Pedag Univ, Dept Phys, Moscow 119435, Russia
[6] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
关键词
D O I
10.1080/09500340410001670866
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultra-fast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic ( liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3-1.55 mm infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2GHz and is limited by readout electronics ( the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 x 10(-18) W/Hz(1/2) at 1.3 mum. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.
引用
收藏
页码:1447 / 1458
页数:12
相关论文
共 26 条
[1]   Enhanced autocompensating quantum cryptography system [J].
Bethune, DS ;
Navarro, M ;
Risk, WP .
APPLIED OPTICS, 2002, 41 (09) :1640-1648
[2]   Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors [J].
Cabrera, B ;
Clarke, RM ;
Colling, P ;
Miller, AJ ;
Nam, S ;
Romani, RW .
APPLIED PHYSICS LETTERS, 1998, 73 (06) :735-737
[3]   10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening [J].
Carruthers, TF ;
Duling, IN .
OPTICS LETTERS, 1996, 21 (23) :1927-1929
[4]   Phase noise measurements of ultrastable 10GHz harmonically modelocked fibre laser [J].
Clark, TR ;
Carruthers, TF ;
Matthews, PJ ;
Duling, IN .
ELECTRONICS LETTERS, 1999, 35 (09) :720-721
[5]   Analysis of astronomical data from optical superconducting tunnel junctions [J].
de Bruijne, JHJ ;
Reynolds, AP ;
Perryman, MAC ;
Favata, F ;
Peacock, A .
OPTICAL ENGINEERING, 2002, 41 (06) :1158-1169
[6]   Fabrication, of nanostructured superconducting single-photon detectors [J].
Gol'tsman, GN ;
Smirnov, K ;
Kouminov, P ;
Voronov, B ;
Kaurova, N ;
Drakinsky, V ;
Zhang, J ;
Verevkin, A ;
Sobolewski, R .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2003, 13 (02) :192-195
[7]   Picosecond superconducting single-photon optical detector [J].
Gol'tsman, GN ;
Okunev, O ;
Chulkova, G ;
Lipatov, A ;
Semenov, A ;
Smirnov, K ;
Voronov, B ;
Dzardanov, A ;
Williams, C ;
Sobolewski, R .
APPLIED PHYSICS LETTERS, 2001, 79 (06) :705-707
[8]   Practical free-space quantum key distribution over 10 km in daylight and at night [J].
Hughes, RJ ;
Nordholt, JE ;
Derkacs, D ;
Peterson, CG .
NEW JOURNAL OF PHYSICS, 2002, 4 :43.1-43.14
[9]   Ultimate quantum efficiency of a superconducting hot-electron photodetector [J].
Il'in, KS ;
Milostnaya, II ;
Verevkin, AA ;
Gol'tsman, GN ;
Gershenzon, EM ;
Sobolewski, R .
APPLIED PHYSICS LETTERS, 1998, 73 (26) :3938-3940
[10]  
*JAN RES CO INC, CRYOG FREE 2 STAG AD