Electrochemical ammonia production on molybdenum nitride nanoclusters

被引:73
作者
Howalt, J. G. [1 ,2 ]
Vegge, T. [1 ]
机构
[1] Tech Univ Denmark, Dept Energy Convers & Storage, DK-4000 Roskilde, Denmark
[2] Tech Univ Denmark, Ctr Atom Scale Mat Design, DK-2800 Lyngby, Denmark
关键词
SINGLE-CRYSTAL SURFACES; AUGMENTED-WAVE METHOD; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; 1ST-PRINCIPLES CALCULATIONS; STRUCTURE SENSITIVITY; RUTHENIUM CATALYSTS; HYDROGEN STORAGE; SADDLE-POINTS; ADSORPTION;
D O I
10.1039/c3cp53160k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Theoretical investigations of electrochemical production of ammonia at ambient temperature and pressure on nitrogen covered molybdenum nanoparticles are presented. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of N-2 and N adatoms on cuboctahedral Mo13 nanoparticles. Pathways for electrochemical ammonia production via direct protonation of N adatoms and N-2 admolecules with an onset potential as low as -0.5 V and generally lower than -0.8 V on both a nitrogen covered or a clean Mo nanoparticle. Calculations presented here show that nitrogen dissociation at either nitrogen vacancies on a nitrogen covered molybdenum particle or at a clean molybdenum particle is unlikely to occur under ambient conditions due to very high activation barriers of 1.8 eV. The calculations suggest that the nitrogen will be favored at the surface compared to hydrogen even at potentials of -0.8 V and the Faradaic losses due to HER should be low.
引用
收藏
页码:20957 / 20965
页数:9
相关论文
共 66 条
  • [41] Real-space grid implementation of the projector augmented wave method
    Mortensen, JJ
    Hansen, LB
    Jacobsen, KW
    [J]. PHYSICAL REVIEW B, 2005, 71 (03):
  • [42] Electrolytic synthesis of ammonia in molten salts under atmospheric pressure
    Murakami, T
    Nishikiori, T
    Nohira, T
    Ito, Y
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (02) : 334 - 335
  • [43] Nielsen A., 1995, Ammonia-Catalysis and Manufacture
  • [44] Origin of the overpotential for oxygen reduction at a fuel-cell cathode
    Norskov, JK
    Rossmeisl, J
    Logadottir, A
    Lindqvist, L
    Kitchin, JR
    Bligaard, T
    Jónsson, H
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (46) : 17886 - 17892
  • [45] INTERACTIONS OF POTASSIUM, OXYGEN AND NITROGEN WITH POLYCRYSTALLINE IRON SURFACES
    PAAL, Z
    ERTL, G
    LEE, SB
    [J]. APPLIED SURFACE SCIENCE, 1981, 8 (03) : 231 - 249
  • [46] Finite-Size Effects in O and CO Adsorption for the Late Transition Metals
    Peterson, Andrew A.
    Grabow, Lars C.
    Brennan, Thomas P.
    Shong, Bonggeun
    Ooi, Chinchun
    Wu, Di M.
    Li, Christina W.
    Kushwaha, Amit
    Medford, Andrew J.
    Mbuga, Felix
    Li, Lin
    Norskov, Jens K.
    [J]. TOPICS IN CATALYSIS, 2012, 55 (19-20) : 1276 - 1282
  • [47] How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
    Peterson, Andrew A.
    Abild-Pedersen, Frank
    Studt, Felix
    Rossmeisl, Jan
    Norskov, Jens K.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) : 1311 - 1315
  • [48] Ammonia synthesis at low temperatures
    Rod, TH
    Logadottir, A
    Norskov, JK
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (12) : 5343 - 5347
  • [49] Electrolysis of water on oxide surfaces
    Rossmeisl, J.
    Qu, Z.-W.
    Zhu, H.
    Kroes, G.-J.
    Norskov, J. K.
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2007, 607 (1-2) : 83 - 89
  • [50] Electrolysis of water on (oxidized) metal surfaces
    Rossmeisl, J
    Logadottir, A
    Norskov, JK
    [J]. CHEMICAL PHYSICS, 2005, 319 (1-3) : 178 - 184