The role of Mittag-Leffler functions in anomalous relaxation

被引:21
作者
Crothers, DSF [1 ]
Holland, D
Kalmykov, YP
Coffey, W
机构
[1] Queens Univ Belfast, Dept Appl Math & Theoret Phys, Belfast BT7 1NN, Antrim, North Ireland
[2] Univ Perpignan, Ctr Etud Fondamentales, F-66860 Perpignan, France
[3] Trinity Coll Dublin, Dept Elect & Elect Engn, Sch Engn, Dublin 2, Ireland
关键词
fractal; anomalous; diffusion;
D O I
10.1016/j.molliq.2004.02.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The intertia-corrected Debye model of rotational Brownian motion of polar molecules was generalized by Coffey et al. [Phys. Rev. E, 65, 32 102 (2002)] to describe fractional dynamics and anomalous rotational diffusion. The linear-response theory of the normalized complex susceptibility was given in terms of a Laplace transform and as a function of frequency. The angular-velocity correlation function was parametrized via fractal Mittag-Leffler functions. Here we apply the latter method and complex-contour integral-representation methods to determine the original time-dependent amplitude as an inverse Laplace transform using both analytical and numerical approaches, as appropriate. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 6 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[3]  
*BAT MAN PROJ, 1953, HIGH TRANSC FUNCT, V3, pCH18
[4]   Inertial effects in anomalous dielectric relaxation [J].
Coffey, WT ;
Kalmykov, YP ;
Titov, SV .
PHYSICAL REVIEW E, 2002, 65 (03) :1-032102
[5]  
COFFEY WT, 1976, J PHYS D, V9, P47
[6]  
Oldham K B, 1974, FRACTIONAL CALCULUS