Mechanical instability and pore generation in anodic alumina

被引:69
作者
Garcia-Vergarai, S. J.
Iglesias-Rubianesi, L.
Blanco-Pinzon, C. E.
Skeldon, P.
Thompson, G. E.
Campestrini, P.
机构
[1] Univ Manchester, Sch Mat, Corros & Protect Ctr, Manchester M60 1QD, Lancs, England
[2] Agfa Gevaert NV, B-2640 Mortsel, Belgium
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2006年 / 462卷 / 2072期
关键词
aluminium; anodizing; anodic oxide; porous film;
D O I
10.1098/rspa.2006.1686
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper examines the mechanism of pore formation in anodic films on aluminium. For this purpose, the dimensional changes of specimens during growth of porous films on aluminium in phosphoric and sulphuric acid electrolytes are examined using transmission and scanning electron microscopies. Further, the compositions of films and the efficiencies of anodizing are determined by Rutherford backscattering spectroscopy and nuclear reaction analysis. Significantly, the efficiency of anodizing is about 60%, while the surface of the anodic film is located above the original aluminium surface, i.e. before anodizing. The ratio of the thickness of the anodic film relative to the thickness of the consumed aluminium is about 1.35 for the selected conditions of anodizing. The behaviour runs counter to the widely accepted mechanism of pore formation by field-assisted dissolution of alumina. It is explained by the high plasticity of the anodic alumina in the barrier region in the presence of ionic transport, with film growth stresses displacing material from the barrier layer towards the cell wall region during anodizing. The response of the film to volume constraints on growth indicates a major role of stress and stress-relief processes in determining the morphology and self-regulating organization of pores.
引用
收藏
页码:2345 / 2358
页数:14
相关论文
共 25 条
[1]   MICROANALYSIS OF STABLE ISOTOPES OF OXYGEN BY MEANS OF NUCLEAR REACTIONS [J].
AMSEL, G ;
SAMUEL, D .
ANALYTICAL CHEMISTRY, 1967, 39 (14) :1689-&
[2]   MECHANISM OF ANODIC OXIDATION [J].
AMSEL, G ;
SAMUEL, D .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1962, 23 (DEC) :1707-&
[3]  
[Anonymous], SURFACE TREATMENT FI
[4]   USE OF RUTHERFORD BACKSCATTERING TO STUDY BEHAVIOR OF ION-IMPLANTED ATOMS DURING ANODIC-OXIDATION OF ALUMINUM - AR, KR, XE, K, RB, CS, CL, BR, AND I [J].
BROWN, F ;
MACKINTOSH, WD .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1973, 120 (08) :1096-1102
[5]   STUDY BY NUCLEAR MICROANALYSIS AND O-18 TRACER TECHNIQUES OF OXYGEN-TRANSPORT PROCESSES AND GROWTH LAWS FOR POROUS ANODIC OXIDE LAYERS ON ALUMINUM [J].
CHERKI, C ;
SIEJKA, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1973, 120 (06) :784-791
[7]   HIGH RESISTANCE ANODIC OXIDE FILMS ON ALUMINIUM [J].
HARKNESS, AC ;
YOUNG, L .
CANADIAN JOURNAL OF CHEMISTRY, 1966, 44 (20) :2409-&
[8]   A MECHANISM FOR THE FORMATION OF POROUS ANODIC OXIDE FILMS ON ALUMINIUM [J].
HOAR, TP ;
MOTT, NF .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1959, 9 (02) :97-99
[9]   Ionic transport in anodically oxidized Al/W layers [J].
Iglesias-Rubianes, L ;
Skeldon, P ;
Thompson, GE ;
Habazaki, H ;
Shimizu, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) :B23-B26
[10]   STRUCTURAL FEATURES OF OXIDE COATINGS ON ALUMINIUM [J].
KELLER, F ;
HUNTER, MS ;
ROBINSON, DL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1953, 100 (09) :411-419