Exploiting the p53 pathway for the diagnosis and therapy of human cancer

被引:33
作者
Lane, D. P. [1 ]
机构
[1] Inst Cell & Mol Biol, Singapore 138673, Singapore
来源
MOLECULAR APPROACHES TO CONTROLLING CANCER | 2005年 / 70卷
关键词
D O I
10.1101/sqb.2005.70.049
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
After 26 years of research and the publication of 38,000 papers, our knowledge of the p53 human tumor suppressor protein is impressive. Over half of all human cancers have mutations in the p53 gene, and the p53 pathway in animal models dramatically regulates the cellular response to ionizing radiation and chemotherapeutic drugs. The ability to translate this knowledge to patient benefit is, however, still in its infancy. The many approaches to determining the status of the p53 pathway in human tumor biopsy samples and the attempts to develop p53-selective therapies are described. A great deal of our knowledge of the p53 system remains incomplete, and the issue of how to best conduct translational research in cancer is debated using the difficulties around the p53 system as an example. The need for a more unified and coordinated approach to critical technological developments and clinical trial protocols is discussed.
引用
收藏
页码:489 / 497
页数:9
相关论文
共 72 条
[11]   Drosophila p53 binds a damage response element at the reaper locus [J].
Brodsky, MH ;
Nordstrom, W ;
Tsang, G ;
Kwan, E ;
Rubin, GM ;
Abrams, JM .
CELL, 2000, 101 (01) :103-113
[12]   Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs [J].
Bykov, VJN ;
Issaeva, N ;
Zache, N ;
Shilov, A ;
Hultcrantz, M ;
Bergman, J ;
Selivanova, G ;
Wiman, KG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (34) :30384-30391
[13]   Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound [J].
Bykov, VJN ;
Issaeva, N ;
Shilov, A ;
Hultcrantz, M ;
Pugacheva, E ;
Chumakov, P ;
Bergman, J ;
Wiman, KG ;
Selivanova, G .
NATURE MEDICINE, 2002, 8 (03) :282-288
[14]   Solution structure of p53 core domain:: Structural basis for its instability [J].
Cañadillas, JMP ;
Tidow, H ;
Freund, SMV ;
Rutherford, TJ ;
Ang, HC ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (07) :2109-2114
[15]   CRYSTAL-STRUCTURE OF A P53 TUMOR-SUPPRESSOR DNA COMPLEX - UNDERSTANDING TUMORIGENIC MUTATIONS [J].
CHO, YJ ;
GORINA, S ;
JEFFREY, PD ;
PAVLETICH, NP .
SCIENCE, 1994, 265 (5170) :346-355
[16]   THYMOCYTE APOPTOSIS INDUCED BY P53-DEPENDENT AND INDEPENDENT PATHWAYS [J].
CLARKE, AR ;
PURDIE, CA ;
HARRISON, DJ ;
MORRIS, RG ;
BIRD, CC ;
HOOPER, ML ;
WYLLIE, AH .
NATURE, 1993, 362 (6423) :849-852
[17]   Caenorhabditis elegans p53:: Role in apoptosis, meiosis, and stress resistance [J].
Derry, WB ;
Putzke, AP ;
Rothman, JH .
SCIENCE, 2001, 294 (5542) :591-595
[18]   MICE DEFICIENT FOR P53 ARE DEVELOPMENTALLY NORMAL BUT SUSCEPTIBLE TO SPONTANEOUS TUMORS [J].
DONEHOWER, LA ;
HARVEY, M ;
SLAGLE, BL ;
MCARTHUR, MJ ;
MONTGOMERY, CA ;
BUTEL, JS ;
BRADLEY, A .
NATURE, 1992, 356 (6366) :215-221
[19]   P53: guardian and suppressor of longevity? [J].
Donehower, LA .
EXPERIMENTAL GERONTOLOGY, 2005, 40 (1-2) :7-9
[20]   Loss of one allele of ARF rescues Mdm2 haploinsufficiency effects on apoptosis and lymphoma development [J].
Eischen, CM ;
Alt, JR ;
Wang, P .
ONCOGENE, 2004, 23 (55) :8931-8940