Solution structure of p53 core domain:: Structural basis for its instability

被引:145
作者
Cañadillas, JMP [1 ]
Tidow, H [1 ]
Freund, SMV [1 ]
Rutherford, TJ [1 ]
Ang, HC [1 ]
Fersht, AR [1 ]
机构
[1] MRC, Ctr Prot Engn, Cambridge CB2 2QH, England
基金
英国医学研究理事会;
关键词
dynamics; stability; protein; NMR; isotope labeling;
D O I
10.1073/pnas.0510941103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The 25-kDa core domain of the tumor suppressor p53 is inherently unstable and melts at just above body temperature, which makes it susceptible to oncogenic mutations that inactivate it by lowering its stability. We determined its structure in solution using state-of-the-art isotopic labeling techniques and NMR spectroscopy to complement its crystal structure. The structure was very similar to that in the crystal but far more mobile than expected. importantly, we were able to analyze by NMR the structural environment of several buried polar groups, which indicated structural reasons for the instability. NMR spectroscopy, with its ability to detect protons, located buried hydroxyl and sulfhydryl groups that form suboptimal hydrogen-bond networks. We mutated one such buried pair, Tyr-236 and Thr-253 to Phe-236 and IIe-253 (as found in the paralogs p63 and p73), and stabilized p53 by 1.6 kcal/mol. We also detected differences in the conformation of a mobile loop that might reflect the existence of physiologically relevant alternative conformations. The effects of temperature on the dynamics of aromatic residues indicated that the protein also experiences several dynamic processes that might be related to the presence of alternative hydrogen-bond patterns in the protein interior. p53 appears to have evolved to be dynamic and unstable.
引用
收藏
页码:2109 / 2114
页数:6
相关论文
共 26 条
[1]   PRIMARY STRUCTURE EFFECTS ON PEPTIDE GROUP HYDROGEN-EXCHANGE [J].
BAI, YW ;
MILNE, JS ;
MAYNE, L ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (01) :75-86
[2]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[3]   Rescuing the function of mutant p53 [J].
Bullock, AN ;
Fersht, A .
NATURE REVIEWS CANCER, 2001, 1 (01) :68-76
[4]   Thermodynamic stability of wild-type and mutant p53 core domain [J].
Bullock, AN ;
Henckel, J ;
DeDecker, BS ;
Johnson, CM ;
Nikolova, PV ;
Proctor, MR ;
Lane, DP ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14338-14342
[5]   CRYSTAL-STRUCTURE OF A P53 TUMOR-SUPPRESSOR DNA COMPLEX - UNDERSTANDING TUMORIGENIC MUTATIONS [J].
CHO, YJ ;
GORINA, S ;
JEFFREY, PD ;
PAVLETICH, NP .
SCIENCE, 1994, 265 (5170) :346-355
[6]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[7]   BioMagResBank database with sets of experimental NMR constraints corresponding to the structures of over 1400 biomolecules deposited in the Protein Data Bank [J].
Doreleijers, JF ;
Mading, S ;
Maziuk, D ;
Sojourner, K ;
Yin, L ;
Zhu, J ;
Markley, JL ;
Ulrich, EL .
JOURNAL OF BIOMOLECULAR NMR, 2003, 26 (02) :139-146
[8]   HYDROGEN-BONDING AND BIOLOGICAL SPECIFICITY ANALYZED BY PROTEIN ENGINEERING [J].
FERSHT, AR ;
SHI, JP ;
KNILLJONES, J ;
LOWE, DM ;
WILKINSON, AJ ;
BLOW, DM ;
BRICK, P ;
CARTER, P ;
WAYE, MMY ;
WINTER, G .
NATURE, 1985, 314 (6008) :235-238
[9]   Kinetic instability of p53 core domain mutants - Implications for rescue by small molecules [J].
Friedler, A ;
Veprintsev, DB ;
Hansson, LO ;
Fersht, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (26) :24108-24112
[10]   New developments in isotope labeling strategies for protein solution NMR spectroscopy [J].
Goto, NK ;
Kay, LE .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (05) :585-592