Structure-based design of a FAAH variant that discriminates between the N-acyl ethanolamine and taurine families of signaling lipids

被引:23
作者
McKinney, Michele K.
Cravatt, Benjamin F.
机构
[1] Scripps Res Inst, Skagss Inst Chem Biol, Dept Cell Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Skagss Inst Chem Biol, Dept Chem, La Jolla, CA 92037 USA
关键词
D O I
10.1021/bi0608010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fatty acid amide hydrolase (FAAH) inactivates a large and diverse class of endogenous signaling lipids termed fatty acid amides. Representative fatty acid amides include the N-acyl ethanolamines (NAEs) anandamide, which serves as an endogenous ligand for cannabinoid receptors, and N-oleoyl and N-palmitoyl ethanolamine, which produce satiety and anti-inflammatory effects, respectively. Global metabolite profiling studies of FAAH (-/-) mice have recently identified a second class of endogenous FAAH substrates: the N-acyl taurines (NATs). To determine the metabolic and signaling functions performed by NAEs and NATs in vivo, a FAAH variant that discriminates between these two substrate classes would be of value. Here, we report the structure-guided design of a point mutant in the active site of FAAH that selectively disrupts interactions with NATs. This glycine-to-aspartate (G268D) mutant was found to exhibit wildtype kinetic parameters with NAEs, but more than a 100-fold reduction in activity with NATs attributable to combined effects on K-m and k(cat) values. These in vitro properties were also observed in living cells, where WT-FAAH and the G268D mutant displayed equivalent hydrolytic activity with NAEs, but the latter enzyme was severely impaired in its ability to catabolize NATs. The G268D FAAH mutant may thus serve as a valuable research tool to illuminate the unique roles played by the NAE and NAT classes of signaling lipids in vivo.
引用
收藏
页码:9016 / 9022
页数:7
相关论文
共 34 条
[1]   Altering substrate specificity of phosphatidylcholine-preferring phospholipase C of Bacillus cereus by random mutagenesis of the headgroup binding site [J].
Antikainen, NM ;
Hergenrother, PJ ;
Harris, MM ;
Corbett, W ;
Martin, SF .
BIOCHEMISTRY, 2003, 42 (06) :1603-1610
[2]   Purification, gene cloning, targeted knockout, overexpression, and biochemical characterization of the major pyrazinamidase from Mycobacterium smegmatis [J].
Boshoff, HIM ;
Mizrahi, V .
JOURNAL OF BACTERIOLOGY, 1998, 180 (22) :5809-5814
[3]   Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling [J].
Bracey, MH ;
Hanson, MA ;
Masuda, KR ;
Stevens, RC ;
Cravatt, BF .
SCIENCE, 2002, 298 (5599) :1793-1796
[4]   Control of pain initiation by endogenous cannabinoids [J].
Calignano, A ;
La Rana, G ;
Giuffrida, A ;
Piomelli, D .
NATURE, 1998, 394 (6690) :277-281
[5]   Study of the amidase signature group [J].
Chebrou, H ;
Bigey, F ;
Arnaud, A ;
Galzy, P .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1996, 1298 (02) :285-293
[6]   Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides [J].
Cravatt, BF ;
Giang, DK ;
Mayfield, SP ;
Boger, DL ;
Lerner, RA ;
Gilula, NB .
NATURE, 1996, 384 (6604) :83-87
[7]   Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase [J].
Cravatt, BF ;
Demarest, K ;
Patricelli, MP ;
Bracey, MH ;
Giang, DK ;
Martin, BR ;
Lichtman, AH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) :9371-9376
[8]   Functional disassociation of the central and peripheral fatty acid amide signaling systems [J].
Cravatt, BF ;
Saghatelian, A ;
Hawkins, EG ;
Clement, AB ;
Bracey, MH ;
Lichtman, AH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (29) :10821-10826
[9]   CHEMICAL CHARACTERIZATION OF A FAMILY OF BRAIN LIPIDS THAT INDUCE SLEEP [J].
CRAVATT, BF ;
PROSPEROGARCIA, O ;
SIUZDAK, G ;
GILULA, NB ;
HENRIKSEN, SJ ;
BOGER, DL ;
LERNER, RA .
SCIENCE, 1995, 268 (5216) :1506-1509
[10]   ISOLATION AND STRUCTURE OF A BRAIN CONSTITUENT THAT BINDS TO THE CANNABINOID RECEPTOR [J].
DEVANE, WA ;
HANUS, L ;
BREUER, A ;
PERTWEE, RG ;
STEVENSON, LA ;
GRIFFIN, G ;
GIBSON, D ;
MANDELBAUM, A ;
ETINGER, A ;
MECHOULAM, R .
SCIENCE, 1992, 258 (5090) :1946-1949