Biosynthesis of terpenoids:: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol

被引:195
作者
Lüttgen, H
Rohdich, F
Herz, S
Wungsintaweekul, J
Hecht, S
Schuhr, CA
Fellermeier, M
Sagner, S
Zenk, MH
Bacher, A
Eisenreich, W
机构
[1] Tech Univ Munich, Lehrstuhl Organ Chem & Biochem, D-85747 Garching, Germany
[2] Univ Munich, Lehrstuhl Pharmazeut Biol, D-80333 Munich, Germany
关键词
D O I
10.1073/pnas.97.3.1062
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A comparative analysis of all published complete genomes indicated that the putative orthologs of the unannotated ychB gene of Escherichia coli follow the distribution of the dxs, dxr, and ygbP genes, which have been shown to specify enzymes of the deoxyxylulose phosphate pathway of terpenoid biosynthesis, thus suggesting that the hypothetical YchB protein also is involved in that pathway. To test this hypothesis, the E. coli ychB gene was expressed in a homologous host. The recombinant protein was purified to homogeneity and was shown to phosphorylate 4-diphosphocytidyl-2C-methyl-D-erythritol in an ATP-dependent reaction. The reaction product was identified as 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate by NMR experiments with various C-13-labeled substrate samples. A C-14-labeled specimen of this compound was converted efficiently into carotenoids by isolated chromoplasts of Capsicum annuum. The sequence of E. coli YchB protein is similar to that of the protein predicted by the tomato cDNA pTOM41 (30% identity), which had been implicated in the conversion of chloroplasts to chromoplasts.
引用
收藏
页码:1062 / 1067
页数:6
相关论文
共 25 条
[1]   SOME NEW ASPECTS OF ISOPRENOID BIOSYNTHESIS IN PLANTS - A REVIEW [J].
BACH, TJ .
LIPIDS, 1995, 30 (03) :191-202
[2]   STEROL MOLECULE - STRUCTURE, BIOSYNTHESIS, AND FUNCTION [J].
BLOCH, K .
STEROIDS, 1992, 57 (08) :378-383
[3]  
Bochar D.A., 1999, Comprehensive Natural Products Chemistry, VVolume 2, P15
[4]   Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits [J].
Bouvier, F ;
d'Harlingue, A ;
Suire, C ;
Backhaus, RA ;
Camara, B .
PLANT PHYSIOLOGY, 1998, 117 (04) :1423-1431
[5]  
Broers STJ, 1994, THESIS EIDGENOSSISCH
[6]  
BULLOCK WO, 1987, BIOTECHNIQUES, V5, P376
[7]  
CAMARA B, 1993, METHOD ENZYMOL, V214, P352
[8]   The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms [J].
Eisenreich, W ;
Schwarz, M ;
Cartayrade, A ;
Arigoni, D ;
Zenk, MH ;
Bacher, A .
CHEMISTRY & BIOLOGY, 1998, 5 (09) :R221-R233
[9]   Cell-free conversion of 1-deoxy-D-xylulose 5-phosphate and 2-C-methyl-D-erythritol 4-phosphate into β-carotene in higher plants and its inhibition by fosmidomycin [J].
Fellermeier, M ;
Kis, K ;
Sagner, S ;
Maier, U ;
Bacher, A ;
Zenk, MH .
TETRAHEDRON LETTERS, 1999, 40 (14) :2743-2746
[10]   Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs [J].
Jomaa, H ;
Wiesner, J ;
Sanderbrand, S ;
Altincicek, B ;
Weidemeyer, C ;
Hintz, M ;
Türbachova, I ;
Eberl, M ;
Zeidler, J ;
Lichtenthaler, HK ;
Soldati, D ;
Beck, E .
SCIENCE, 1999, 285 (5433) :1573-1576