A spectral approach integrating functional genomic annotations for coding and noncoding variants

被引:429
作者
Ionita-Laza, Iuliana [1 ]
McCallum, Kenneth [1 ]
Xu, Bin [2 ]
Buxbaum, Joseph D. [3 ,4 ,5 ,6 ,7 ]
机构
[1] Columbia Univ, Dept Biostat, New York, NY USA
[2] Columbia Univ, Dept Psychiat, New York, NY USA
[3] Icahn Sch Med Mt Sinai, Seaver Autism Ctr Res & Treatment, New York, NY 10029 USA
[4] Icahn Sch Med Mt Sinai, Dept Psychiat, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Dept Neurosci, New York, NY 10029 USA
[7] Icahn Sch Med Mt Sinai, Mindich Child Hlth & Dev Inst, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
DE-NOVO MUTATIONS; ESTIMATING RELATIVE RISKS; INTELLECTUAL DISABILITY; GENETIC-VARIANTS; WHOLE-GENOME; EXOME; AUTISM; SCHIZOPHRENIA; PATTERNS; NETWORK;
D O I
10.1038/ng.3477
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Over the past few years, substantial effort has been put into the functional annotation of variation in human genome sequences. Such annotations can have a critical role in identifying putatively causal variants for a disease or trait among the abundant natural variation that occurs at a locus of interest. The main challenges in using these various annotations include their large numbers and their diversity. Here we develop an unsupervised approach to integrate these different annotations into one measure of functional importance (Eigen) that, unlike most existing methods, is not based on any labeled training data. We show that the resulting meta-score has better discriminatory ability using disease-associated and putatively benign variants from published studies (in both coding and noncoding regions) than the recently proposed CADD score. Across varied scenarios, the Eigen score performs generally better than any single individual annotation, representing a powerful single functional score that can be incorporated in fine-mapping studies.
引用
收藏
页码:214 / 220
页数:7
相关论文
共 46 条
[41]   Functional annotation of noncoding sequence variants [J].
Ritchie, Graham R. S. ;
Dunham, Ian ;
Zeggini, Eleftheria ;
Flicek, Paul .
NATURE METHODS, 2014, 11 (03) :294-U351
[42]   De novo mutations revealed by whole-exome sequencing are strongly associated with autism [J].
Sanders, Stephan J. ;
Murtha, Michael T. ;
Gupta, Abha R. ;
Murdoch, John D. ;
Raubeson, Melanie J. ;
Willsey, A. Jeremy ;
Ercan-Sencicek, A. Gulhan ;
DiLullo, Nicholas M. ;
Parikshak, Neelroop N. ;
Stein, Jason L. ;
Walker, Michael F. ;
Ober, Gordon T. ;
Teran, Nicole A. ;
Song, Youeun ;
El-Fishawy, Paul ;
Murtha, Ryan C. ;
Choi, Murim ;
Overton, John D. ;
Bjornson, Robert D. ;
Carriero, Nicholas J. ;
Meyer, Kyle A. ;
Bilguvar, Kaya ;
Mane, Shrikant M. ;
Sestan, Nenad ;
Lifton, Richard P. ;
Guenel, Murat ;
Roeder, Kathryn ;
Geschwind, Daniel H. ;
Devlin, Bernie ;
State, Matthew W. .
NATURE, 2012, 485 (7397) :237-U124
[43]   Chromatin marks identify critical cell types for fine mapping complex trait variants [J].
Trynka, Gosia ;
Sandor, Cynthia ;
Han, Buhm ;
Xu, Han ;
Stranger, Barbara E. ;
Liu, X. Shirley ;
Raychaudhuri, Soumya .
NATURE GENETICS, 2013, 45 (02) :124-130
[44]   De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia [J].
Xu, Bin ;
Ionita-Laza, Juliana ;
Roos, J. Louw ;
Boone, Braden ;
Woodrick, Scarlet ;
Sun, Yan ;
Levy, Shawn ;
Gogos, Joseph A. ;
Karayiorgou, Maria .
NATURE GENETICS, 2012, 44 (12) :1365-1369
[45]   Intersection of population variation and autoimmunity genetics in human T cell activation [J].
Ye, Chun Jimmie ;
Feng, Ting ;
Kwon, Ho-Keun ;
Raj, Towfique ;
Wilson, Michael ;
Asinovski, Natasha ;
McCabe, Cristin ;
Lee, Michelle H. ;
Frohlich, Irene ;
Paik, Hyun-il ;
Zaitlen, Noah ;
Hacohen, Nir ;
Stranger, Barbara ;
De Jager, Philip ;
Mathis, Diane ;
Regev, Aviv ;
Benoist, Christophe .
SCIENCE, 2014, 345 (6202) :1311-+
[46]   The impact of next-generation sequencing on genomics [J].
Zhang, Jun ;
Chiodini, Rod ;
Badr, Ahmed ;
Zhang, Genfa .
JOURNAL OF GENETICS AND GENOMICS, 2011, 38 (03) :95-109