Momentum conserving model with anomalous thermal conductivity in low dimensional systems

被引:157
作者
Basile, Giada
Bernardin, Cedric
Olla, Stefano
机构
[1] Univ Florence, Dipartimento Matemat, I-50134 Florence, Italy
[2] Ecole Normale Super Lyon, UMPA, UMR 5669, CNRS, F-69364 Lyon 07, France
[3] Univ Paris 09, CNRS, UMR 7534, F-75775 Paris 16, France
关键词
D O I
10.1103/PhysRevLett.96.204303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Anomalous large thermal conductivity has been observed numerically and experimentally in one- and two-dimensional systems. There is an open debate about the role of conservation of momentum. We introduce a model whose thermal conductivity diverges in dimensions 1 and 2 if momentum is conserved, while it remains finite in dimension d >= 3. We consider a system of harmonic oscillators perturbed by a nonlinear stochastic dynamics conserving momentum and energy. We compute explicitly the time correlation function of the energy current C-J(t), and we find that it behaves, for large time, like t(-d/2) in the unpinned cases, and like t(-d/2-1) when an on-site harmonic potential is present. This result clarifies the role of conservation of momentum in the anomalous thermal conductivity in low dimensions.
引用
收藏
页数:4
相关论文
共 14 条
[1]  
BASILE G, CONDMAT0601544
[2]   Fourier's law for a microscopic model of heat conduction [J].
Bernardin, C ;
Olla, S .
JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (3-4) :271-289
[3]   SIMULATION OF NONHARMONIC INTERACTIONS IN A CRYSTAL BY SELF-CONSISTENT RESERVOIRS [J].
BOLSTERLI, M ;
RICH, M ;
VISSCHER, WM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (04) :1086-+
[4]   Fourier's law for a harmonic crystal with self-consistent stochastic reservoirs [J].
Bonetto, F ;
Lebowitz, JL ;
Lukkarinen, J .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :783-813
[5]  
Bonetto F., 2000, MATH PHYS 2000, P128, DOI [DOI 10.1142/9781848160224_0008, 10.1142/9781848160224_0008.]
[6]   Wave scattering by discrete breathers [J].
Flach, S ;
Miroshnichenko, AE ;
Fistul, MV .
CHAOS, 2003, 13 (02) :596-609
[7]   Finite thermal conductivity in 1D lattices [J].
Giardiná, C ;
Livi, R ;
Politi, A ;
Vassalli, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (10) :2144-2147
[8]  
Kubo R., 1991, Statistical Physics II: Nonequilibrium Statistical Mechanics
[9]   Thermal conductivity and bulk viscosity in quartic oscillator chains [J].
Lee-Dadswell, GR ;
Nickel, BG ;
Gray, CG .
PHYSICAL REVIEW E, 2005, 72 (03)
[10]   Thermal conduction in classical low-dimensional lattices [J].
Lepri, S ;
Livi, R ;
Politi, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 377 (01) :1-80